J O U R N A L

OF THE

ASIATIC SOCIETY OF BENGAL.

VOL. LXVIII.

part II. (Natural History, \&c.).
(Nos. I то IV.-1899.)

EDITED BY THE

Natural fistory Secretary.
" It will flourish, if naturalists, chemists, antiquaries, philologers, and men of science in different parts of Asia, will commit their observations to writing, and send them to the Asiatic Society at Calcutta. It will languish, if such communications shall be long intermitted; and it will die away, if they shall entirely cease." Sir Wm. Jones.

CALCUTTA:
PRIN'IED AT THE BAPIIST MISBION PRESS, AND PUBLISEED BY THE
ASIATIC SOCIETY, 57, PARK STREET.
1900.

Gane 4,194

5102 1
8.13

Dates of Issue. Part II, 1899.
No. I.-Containing pp. 1-104, was issued on 3rd June, 1899.
" II. -Containing pp. 105-121, and Plates I and II, was issued on 18th September, 1899.
" III.-Containing pp. 123-234, was issued on 18th January, 1900.
" IV.—Containing pp. 235-257, was issued on 26th February, 1900.

LIST OF CONTRIBUTORS.

Page.
Alcoce, Alpred;-Materials for a Oarcinological Fauna of India, No. 4. The Brachyura Cyclometopa. Part II. A Revision of the Cyclometopa with an Account of the Families Portunidæ, Cancridse and Corystidso. 1
;-Natural History Notes from the Royal Indian Marine Survey Ship 'Investigator,' Commander T. H. Heming, \boldsymbol{R}. N., commanding.-Series III. No. 3. On some Notable New and Rare Species of Orustacea (Plate I). 111
—————Materials for a Carcinological Fauna of India. No. 5. The Brachyura Primigenia, or Dromiacea. 123
Finn, F.;-On a new species of Bhimraj (Dissemurus), with some observations on the so-called family Dicruridm (Plate II) 119
———Notes on the Ploceids. 250
Hooper, David ;-Akakia: an Ancient Eastern Medicine. 245
McMahon, A. H.;-Notes on the Fauna of the Gilgit District. 105
Niceville, Lionel de, and Manderf, N.;-A List of the Butter-
fies of Ceylon, with Notes on the various Species 170
—————————————nero Genus of Butterfies from
Western China allied to Vanessa 234
Turner, H. H.;-On a collection of birds from Manipur. 235
Wood, H. S.;-Note on Hume's Bush-quail (Microperdix mani- purensis) 110
-

LIBRARY OF THE GRAY HERBARIUM
HARVARD UNIVERSITY.
THE GIFT OF
Prof B. R. Eamnan

JOURNAL

OF THE
ASIATIC SOCIETY OF BENGAL, Vol. LXVIII. Part II, No. 1.-1899.

EDITED BY
Jhe Natural fistory Secretary.

The bounds of its investigation will be the geographical limits of Asia : and with in these limits its inquiries will be extended to whatever is performed by man or produced by nature."-Sir William Jones.

Conmunications shoutd be sent under cover to the Secretaries, Asiat. Soc., to whom all orders for the work are to be addressed in India; or care of Messi's. Luzac \& Oo., 46, Great Russell Street, London, W. C., or Mr. Otto Earrassowits, Leipzig, Germany.

CALCUTTA:
printed at the faptist Mission Press,
AND PUBLISHED EY THE
Asiatic Socrety, 57, Park Stregt.

$$
1899 .
$$

CONTENTS.

Materials for a Carcinological Fauna of India. No. 4. The Brachyura Cyclometopa. Part II. A Revision of the Cyclometopa with an Account of the Families Portunides, Cancride and Corystide. By A. Alcoce, M.B., C.M.Z.S, Superintendent of the Indian Museum

JOURNAL

ON THE
ASIATIC SOCIETY OF BENGAL.

Vol. LXVIII. Part II.-NATURAL SCIENCE.
No. I.-1899.

Materials for a Carcinological Fauna of India. No. 4. The Brachyura Cyclometopa. Part II. A Revision of the Cyclometopa with an Account of the Families Portunidæ, Oancridæ and Oorystidæ. By A. Alcock, M.B., C.M.Z.S., Superintendent of the Indian Museum.
[Received 16th March. Read 5th April, 1899.]
In correction of my previously expressed opinion (Journal 1898, Vol. LXXII, pt. II, pp. 68 and 69) I now have no hesitation in accepting the limits of the Cyclometopa that have been fixed by Miers in Challenger Brachyura, pp. 106-215. I am not, however, in agreement with Miers subdivision of this great group.

It seems to me that Ortmann (Zool. Jahrb., Syst., \&c., VII, 1893-94 and IX, 1895-97) has struck out a much more natural classification of the Cyclometopa; but as he includes the Parthenopider and excludes the Corystide, I am anable to adopt it in its entirety. There can be little donbt, however, that Ortmann's conceptions of Xanthini and Cancrini agree with nature.

The present paper contains (1) a statement of my own views as to the classification of the Cyclometopa, and (2) diagnoses of the Indian genera and species of three of the constituent families, namely, the Portunidxe, the Cancridx and the Corystide.

The Indian species of Portunidæ, as far as I know, number 67 or 4, of which 65 are represented in the Indian Museum: of Cancridæ 4, all of which are in the Indian Museam: of Corgatidæ only oneWnow species of Nautilocorystes dredged by the R.I. M. S. "Investi:ctor."
J. II. 1

Tribe CYCLOMETOPA, or CANCROIDEA.

Cyclométopes, Telphusiens and Corystiens, Milne Edwards, Hist. Nat. Crast. I, 264 and 363, II. 7 and II. 139.

Cancroidea and Corystoidea, Dana, U. S. Expl. Exped., Crust. pt. I, pp. 142 and 296.

Cyclométopes and Corystiens. A. Milne Edwards, Ann. Sci. Nat. Zool. (4) XIV, 1860, p. 185.

Cyclometopa or Cancroidea, Miers, Challenger Brachyara, pp. 106-215.
Maioidea-corystoidea, pp. 26 and 28; Cancroidea-portuninea, pp. 27 and 65 ; and Cancroidea-cyclometopa (Cancrini and Xanthini only), pp. 412, 421, 428: Ortmann, Zool. Jahrb., Syst., etc., VII, 1893.94.

Oxyrhyncha-corystidæ and Cyclometopn or Cancroidea Ortmann, in Bronn's Thier-Reich V. ii. Arthropoda, pp. 1166 and 1165.

Carapace variable, either broader than long (almost all Telphusidæ Xanthid \because and Portunidæ, and some Cancridæ) or longer than broad (Corystidæ and most Cancridæ), the antero-lateral borders generally arched, sometimes very strongly so, the postero-lateral borders gene-. rally convergent, sometimes very strongly so. Front broadish or broad, horizontal or obliquely deflexed, occasionally prominent (but never forming a pointed rostrum with the basal antenna-joints for pillars as in the Oxyrhyncha).

Buccal orifice square-cut-only in the Corystide may its anterior angles be rounded off and a little convergent and its anterior boundary be indefinite : palp of external maxillipeds almost always articulating with the antero-internal angle of the merus.

Epistome transverse, never long fore and aft, sometimes linear and sunken (not distinguishable in the Corystidæ).

Antennules folding either nearly transversely or longitudinally.
Branchim nine on either side, their efferent channels opening on either side of the palate.

The abdomen of the male occupies all the space between the last pair of legs.

The genital ducts of the male open on the bases of the last pair of legs.

The Cyclometopa may be divided into the following 5 families:-
Family I. Telphuside. Carapace nsually transverse, broader than long, subquadrilateral or oblate-oval, the antero-lateral borders short, the regions not well delimited (although the cervical suture may be deep and conspicuous) and never areolated. Front broad, not separated from the inner supra-orbital angles, obliquely deflexed (occasionally horizontal), commonly entire (occasionally lobed).

The antennules fold transversely in narrow fossm.
The antennal flagella short.
Epistome of fair length fore and aft, well demarcated and nerer encroached upon by the external maxillipeds.

Buccal orifice quadrate, a little elongate and a little bit rounded and contracted at the anterior angles.

Legs gressorial.
Sternam broad.
The Telphusidæ are the highest Cyclometopes, and approach the Catometopa. They appear to me, from consideration both of structure and of habitat, to have branched off from the Oziine or Eriphiine stocks, bat are now inhabitants of fresh-water or damp jungle.

I do not propose to treat this family farther, in this series of papers, until I have finished the other Brachyura.

Family II. Xinthide. Carapace transversely oval, or transversely hexagonal, or subquadrilateral, or (rarely) subcircular, but almost always broader than long; the regions very often, but by no means always, well defined and multi-areolate. Front broadish or very broad, oftener than not it is not sharply separated from the supra-orbital angles, often obliquely deflexed, usually showing a division into two lobes (each of which may, in some cases, show a further subdivision into two lobules).

The antennules fold either quite transversely or obliquely transversely.

Antennal flagella short or slender.
Epistome of fair length fore and aft, well demarcated, not eup croached on by the external maxillipeds.

Buccal orifice quadrate, commonly broader than long.
Legs gressorial.
Sternam moderately broad-mach narrower than in the Telphusidx.

I have already in this Journal, Vol. LXVII, part 2, 1898, pp. 69-233, dealt with the family Xanthidæ in detail.

The family is there divided into the following 7 sub-families :-
Sub-family I. Xanthinæ, loc. cit. p. 77.
II. Actaeinæ \quad p. 137.
III. Chlorodinæ ", p. 156.
IV. Мепірріпг „ p. 177.
V. Oziinæ " p. 181.
VI. Pilumninæ " p. 190.
VII. Eriphiinæ " p. 213.

In the Oziinse and Eriphiines this family approaches the Telphusides: by the Pilumninæe and Xanthineo it is linked with the section Carcinine of the Portunidæs and, throagh these, with the Cancrides.

Family III. Portunids. Carapace transversely hexagonal, sometimes subquadrate, occasionally elongate-obovate or even subcircular, but generally broader (typically much broader) than long, the regions often not well defined and seldom areolated. Front remarkably broad, generally well separated from the supra-orbital angles and almost always out into teeth or lobes which are from two to six in number exclusive of the sapra-orbital angles.

The antennules fold transversely or obliquely transversely.
The antennal flagella are almost always long and slender.
The epistome may be of fair length fore and aft, or may be linear: it may be, bat is not asually, encroached upon by the external maxillipeds.

Buccal orifice quadrate, well defined anteriorly, usually, but by no means always, broader than long.

The last pair of legs are (with a few exceptions in which their dactylus is hook-like or is merely lanceolate) pecaliarly modified for swimming, having at least the last two joints compressed, broadlyfoliaceons, and paddle-like.

Sternum broad.
This family is here divided into 4 sub-families, namely :-Sub-family I. Carcinines see ahead pp. 6, 7.

$"$	II.	Portunins	"	pp. 6, 7.
$"$	III.	Caphyrins	$"$	pp. 6,8.
$"$	IV.	Lupins	$"$	pp. 6, 8.

The Carcininse, by way of Oarcinus, approach the Xanthides, by way of Hoploxanthus.

Family IV. Cancrids. Carapace either transversely oval (Cancrinse) or, more commonly, elongate-oval or subcircular, the regions rarely strongly delimited and areolate. Front not very broad, very often cut into 3 (sometimes 2 or 4) sharp teeth, sometimes rather prominent.

The antennules fold longitadinally.
Antennal flagella usually long, coarse, and setaceous.
Epistome usaally of fair length, often sunken, always overlapped, more or less, by the external maxillipeds, which are commonly, though not always, elongate. Buccal orifice quadrate, commonly a little elongate.

Legs gressorial.
Sternam narrow.

The family is here divided into 6 sab-families :-

Sub-family	1.	Cancrins	see ahead	95.
"	II.	Pirimelin®	"	p. 95.
"	III.	Thiins	"	p. 96.
"	JV.	Atelecyclinse	"	p. 96.
"	V.	Acanthocyclins	"	p. 96.
[? Subfam	VI.	Trichiinæ	"	p. 96.]

In the Pirimiline and Thiinse this family approaches the Carcininze among the Portunidæ; and by the Atelecyclinse it is allied to the Corystidæ.

Family V. Corystider. Carapace a good deal longer than broad, elongate-oval, the regions fairly well defined or not, not areolated. Front rather prominent, not very broad, cat into 2 or 3 teeth.

The antennules are small and fold longitudinally.
The antennal flagella, when present, are long-sometimes longer than the carapace-coarse, and setaceous.

There is no epistome, and the maxillipeds, which occasionally have a pediform cast, are elongate and extend almost up to the antennules.

Buccal cavern rather elongate, its sides slightly convergent quite at their anterior end.

Legs either gressorial, or the last pair modified for swimming.
Sternum narrow and elongate.
In some of the genera of this group the antennal flagella are as long as the carapace and the dactyli of the legs are almost styliform : in others the dactyli are lanceolate-the lnst pair broadly so-and the antennal flagella are not more than half as long as the carapace.

The Corystidse are the lowest Cyclometopa and have much the same relative position to the higher families of Cyclometopes as the Raninidx have to the higher families of Oxystomes.

Family PORTUNID压.

Portuniens, Milne Edwards, Hist. Nat. Crast. I. 432: A. Milne Edwards, Ann. Sci. Nat., Zool., (4) XIV. 1860, p. 195 ; and Archiv. du Mus. X. 1861, p. 310.

Portunidæ and Platyonychidæ, Dana, U. S. Expl. Exp. Crust. pt. I. pp. 267, 290.

Portunidee, Miers, Challenger Brachyura, p. 169.
Portuninea, Ortmann, Zool. Jahrb., Syst., VII. 1893, p. 65.
Carapace depressed, or little convex (strongly convex in Spherocarcinus), hexagonal, sometimes subquadrate, occasionally elongate-obovate or even subcircalar, but generally broader (typically mach broader) than long; the regions most often not well defined, seldom areolated;
the antero-lateral borders cat into teeth which are from 5 (very rarely 4) to 9 in namber (in Podophthalmus and some species of Euphylax, in which the antero-lateral borders are excavated for the enormously prolonged orbits, the number of teeth is reduced farther).

Front remarkably broad, generally well separated from the supraorbital angles, almost always cut into teeth or lobes, which are from 2 to 6 in number exclusive of the supra-orbital angles.

The antennules fold transversely or obliquely transversely.
Antennal flagella almost always long and slender.
The epistome may be of fair length fore and aft, or may be linear and sunken, but the palate is well defined anteriorly.

Buccal cavern quadrate, commonly broader than long, the merus of the external maxillipeds never decidedly elongate.

The last pair of legs are, with few exceptions, modified for swimming, having at least the last two joints compressed, greatly broadened, and paddle-like. (In Caphyra and Sphserocarcinus the last pair of legs are much like the other three pairs, are subdorsal, and end in a hooklike dactylus. In Carcinus, Nectocarcinus and Portumnus the dactylas of the last pair of legs is merely lanceolate).

I would propose to divide the Portunidæ into four sab-families :-

1. Sub-family Lupinse. The chelipeds are longer, asaally mach longer, than any of the lega, the first three pair of which have a tendency to be slender and the last pair of which end in typical swimmingpaddles: the antero-lateral borders of the carapace are cat into from 5 (very rarely 4) to 9 distinct teeth. The carapace may be subrotand, bat it is usually conspicuously broad.
2. Sub-family Caphyrinse. The chelipeds and legs are short, but the chelipeds are distinctly, if only slightly, longer than the legs. The carapace is either as long as broad or very little broader than long, and is either smooth or is traversed on either side by a single ridge ranning inwards from the last of the (4 or) 5 teeth or puckers into which the antero-lateral border is divided. The last pair of legs are either swim-ming-paddles or are subdorsal and end in a prehensile dactylus.
3. Sab-family Portuninæ. The legs often have a tendency to be stont, and at least one pair of them is at least as long as the chelipeds: the last pair are typical swimming-paddles. The carapace is seldom very broad and its antero-lateral borders are cut into 5 teeth. The basal antenna-joint may be either fixed or movable : it is seldom broader than long, often longer than broad, and lies almost in the longitudinal axis of the carapace.
4. Sub-family Carcinines. The legs have a tendency to be stout, and at least one pair of them is at least as long as the chelipeds: the
last pair end in a lanceolate dactylus and otherwise do not differ much from the other three pairs. Carapace not at all broad, its antero-lateral borders cut into 4 or 5 teeth. The basal antenna-joint is fixed : it is longer than broad and lies in the longitudinal axis of the carapace.

Sub-family I. Carcininar.

This sub-family comes nearest to the other Cancroid families. Of its constituent genera Carcinus touches the Cancridæ and Xanthidæ, Nectocarcinus touches the Xanthidæ, and Portumnus touches the Corystidæ.

It may be divided into two Alliances :-
Alliance 1. Portumnoida. Carapace as long as broad : antennæ setaceous: crests of endostome? For the single genus.

Portumnus, Leach, Malac. Pod. Brit. text of pl. iv. (=Xaiva, Macleay in Smith's Ill. Annulosa S. Africa, p. 62).

Alliance 2. Oarcinoida. Carapace broader than long: antennæ not setaceons, the basal antenna-joint fixed : the palatal crests defining the efferent branchial channels are either interrupted or completely wanting. Constituent genera :-

1. ©Carcinus, Leach.
2. Nectocarcinus. A. Milne Edwards, Ann. Sci. Nat. Zool. (4) XIV. 1860, pp. 220, 228 ; and Archiv. du Mus. X. 1861, p. 404.

Sub-family II. Portunine.

The material at my disposal is not sufficient to enable me with any confidence to separate the genera of this sub-family into groups, so that the following classification is meant to be merely a suggestion.

Alliance 1. Portunoida : The last pair of legs are typical swim-ming-paddles: the basal antenna-joint may be either fixed or movable: the palatal crests defining the efferent branchial channels may either be distinct and complete or be wanting. Constituent genera :-

1. Bathynectes, Stimpson, Bull. Mas. Comp. Zool. II. 1870-71, p. 145 (= Thranites, Bovallius, Ofversigt Kongl. Vetensk.-Ak. Forhandl. 1876, No. 9, p. 61).
2. Benthochascon, Alcock.
3. Liocarcinus, Stimpson, Bull. Mus. Comp. Zool. II. 1870-71, p. 146 (footnote).
4. Ovalipes, M. J. Rathban, Proc. U. S. Nat. Mas. XXI. 1898, p. 597 (for Platyonychus as restricted by Miers, Challenger Brachyura, p. 201 ; = Anisopus DeHaan Faun. Japon. Crust. p. 12).
5. Parathranites, Miers, Alcock.
6. Polybius, Leach, Malac. Pod. Brit. text of pl. ix. B : and Milne Edwards, Hist. Nat. Crust. I. 438.
7. Portunus, Fabr. : Milne Edwards, Hist. Nat. Crust. I. 433.

Alliance 2. Cranophthnlmoida. As Portunoida, but the inner infra-orbital angle is fused with the inner supra-orbital angle. For the single genus.

Canophthalmus, A. Milne Edwards, Miss. Sci. Mex. Crust. p. 237.

Sub-family III. Caphyrine.

The genus Lissocarcinus connects this sub-family, by means of Thalamonyx, with the Lapinæ. Caphyra is another link with the Lapinæ, and Sphæerocarcinus connects Lissocarcinus and Caphyra.

The three constituent genera are as follows, and, in my opinion, each genus is equivalent to nn " alliance" in the other sub-families :-

1. Lissocarcinus, Adams and White. The busal antenna-joint has its antero-exterual angle produced to touch the front and occlude the orbital hintus-much as in Oharybdis (=Goniosoma) : the last pair of legs are swimming paddles.
2. Sphærocarcinus, Zehntner, Rev. Suisse Zool., Ann. Mus. d' Hist. Nat. Genève, II. 1894, p. 163. As Lissocarcinus, but the last pair of legs are as in Oaphyra, and the carapace is very strongly convex.
3. ${ }^{*}$ Caphyra, Guérin, Ann. Sci. Nat. XXV. .1832, pp. 285, 286 (=Camptonyx, Heller SB. Ak. Wien, XLIII. 1861, i. p. 357). The last pair of legs are subdorsal in position, are almost similar to the other legs and end in a hook-like dactylus. The basal antenua-joint is as in Charybdis (=Goniosoma).

Sub-family IV. Lupine.

The genera of this sab-family fall into the 3 following alliances :-
Alliance 1. Lupoida. The basal antenna-joint is short and squat and decidedly broader than long; or it has its greatest diameter transverse, or obliquely transverse, owing to the extension of its anteroexternal angle towards or into the orbit or up to the front.

The chelipeds are usually very much longer than the legs, of which the first 3 pairs have a tendency to be slender and the fourth pair usually has the last four joints mach broadened.

The carapace is usually decidedly transverse with the anterolateral borders longer than the postero-lateral, and is very often crossed by a few long definitely-placed transverse ridges, of which one that arches inwards from the last tooth or spine of the antero-lateral border on either side is the most constant.

The genera that constitute this Alliance are the following :-

1. Charybdis, De Haan (or Goniosoma, A. Milne Edwards) with subgenera *Gonioneptunus Ortmann and *Goniohellenus (nov.).
2. Cronius, Stimpson, Ann. Lyc. Nat. Hist. New York, VII. 1860, p. 225 (Charybdella, M. J. Rathban, Proc. Biol. Soc. Washington, XI. 1897, p. 166).
3. Irupa, De Haan, Faun. Japon. Crust. p. 11 : A. Milne Edwards, Archiv. du Mus. X. 1861, p. 351 (Lupella, M. J. Rathban, tom. cit. p. 155).
4. Neptanus, De Haan (Portanus, M. J. Rathban, tom. cit. p. 155, nec awctormm) with sub-genera Achelous, Amphitrite, Oallinectes, ${ }^{*}$ Hellenus (including * Xiphonectes) and *Lapocycloporus (nov.).
5. Scylla, De Haan.
6. Thalamita, Latreille: with sub-genus Thalamitoides A. Milne Bdwards, Nouv. Archiv. du Mus, V. 1869, p. 146.
7. Thalamonyx, A. Milne Edwards.
[8. Hedrophthalmus, Nanck, Zeits. Wiss. Zool. XXXIV. 1880, p. 67].

Alliance 2. Podophthalmoida. As Lapoida, but the eyes are borne on basal stalks of enormous length and the orbits are continued along the whole of the antero-lateral borders of the carapace.

The genera that constitute this Alliance are :-

1. Podophthalmus, Lamarck.
2. Euphylax, Stimpson, Ann. Lyc. Nat. Hist. New York, VII. 1862, p. 225.

Alliance 3. Lupocycloida. The basal antenna-joint, though not long, is rather slender and does not lie transversely or have its anteroextarnal angle produced to any extent.

The chelipeds are considerably, sometimes very much, longer than any of the legs, of which the first three pairs are slender.

In the fourth pair of legs the last two joints are much broadened, but the merus and carpus may be slender.

The carapace is of no very remarkable breadth, the antero-lateral borders are about as long as the postero-lateral, and at least one transverse ridge is present on either side.

Two genera enter into this Alliance, namely,

1. Carupa, Dana (in which the meras and carpus of the last pair of legs are not broadened).
2. Lapocyclus, Adams and White (in which the merus and carpus of the last pair of legs may either be broadened or not).

In the preceding scheme of classification the Indian genera are printed in Roman type and the genera known to me by antopsy are marked with an asterisk.
J. II. 2

Key to the Indian genera of the Sub.families Caroininse and Portaninse.

A. Propodite of the last pair of legs merely dilated, the daotylas lanceolate
B. Propodite of the last pair of lege typioally foliaceons and paddle-like :-

1. Carapece smooth; orbits with two very indistinct grooves in the upper margin: arm short, without spines: legs stout
2. Carapece with definitely-disposed tuberoles; orbits with two open fasures in the upper

Key to the Indian representatives of the Sub-family Caphyrins.
Chelipeds and legs short : carapace as long as broad or not much broader than long, smooth or with a single transverse ridge on either side: eyes and orbits normal : fronto-orbital border very much less than the greatest width of the carapace: antero-external angle of basal antennajoint produced to meet the front and fill the orbital hiatar to the exclusion of the flagellum: front cut into two broad lobes besides the inner supra-orbital angles, or aubentire
I. The eyes, eyestalks, and orbits are normal in size and position :-
A. The extent of the fronto-orbital border is decidedly less, and is commonly very much less than the greatest breadth of the carapace, so that the antero-lateral borders are oblique and more or less arched. The antennal flagellum is near the orbital hiatus and sometimes in it:-
3. The antero-external angle of the basal antenna-joint not appreciably produced, the flagellam standing in the orbital hiatus :-
i. Carapace very decidedly broader than long, its antero-lateral borders ont into seven rather irregular teeth .
ii. Carapace little broader than long, ils antero-lateral bordere out into nine teeth which are alternately large and mall (the small teeth sometimes obsolescent) ..

Carupa.

Lupactelus.

```
-gakTVELEd0cod
    vainvived
```



```
CENONTIVHJ
-(vmosoinOD = )
    gragagviD
'san_ISmsmasmon
gnomdyN
vitasg
```


Subfamily I. CARCININ 2 .
 Carcinus, Leach.

Carcinus, Leach, Malac. Podophth. Brit. Text of pl. V.: Desmareat, Consid. Gen. Crust. p. 80 : Milne Fdwardg, Hist. Nat. Crust. I. 438 : De Haan, Fann. Japor. Crast. p. 18: Bell, British Stalk-eyed Crust. p. 75 : A. Milne Fdwards, Ann. Sci. Nat., Zool., (4) XIV. 1860, pp. 228, 266 ; and Archiv. du Mus. X. 1861, p. 890.

Carcinides, M. J. Bathbun, Proc. Biol. Boc. Washington XI. 1897, p. 164 (new name proposed).

Carapace approaching the hexagonal, not broad, slightly but distinctly convex, the regions fairly well-defined (well-defined for a Portanoid), no distinct transverse ridges.

Front proper fairly well defined from the inner supra-orbital angles beyond which it projects slightly, three lobed, between a fourth and a fifth the greatest breadth of the carapace in width.

Antero-lateral borders thin, oblique, arched, cat into five teeth including the onter orbital angles, shorter than the postero-lateral borders.

Orbits with one faint notch in the upper and one in the concave lower border, the inner angle of the lower border dentiform but not very prominent. The antennules fold obliquely, but nearer the trangverse than the longitudinal.

Basal antenna-joint slightly longer than broad, fixed; the flagellum, which is not very long, stands in the orbital hiatas.

Buccal cavern square, its greatest length a little more than its greatest breadth : the external maxillipeds are rather elongate, especially the meras which projects somewhat beyond the level of the edge of the endostome: epistome lozenge-shaped. The ridges that define the efferent branchial canals do not approach the edge of the endostome.

Chelipeds massive, just shorter than any of the first three pairs of legs, slightly nnequal : arm short, without any spines: inner angle of wrist alone spiniform : no spines on the hand, which is deep and not prismatic: fingers stout, a little shorter than the palm, not very strongly toothed.

Legs stoutish : the last pair have the merns elongate and unarmed, the carpus not dilated, the propodite shortened and somewhat broadened, and the dactylus acutely lanceolate.

The abdomen of the male consists of five pieces, the 3rd-5th terga being fased.

Carcinus exbibits the relation of the Porturide to other Cyclometopan families, being related to Pirimeta among the Cancridm and to Hoploxanthus among the Xanthide.

1. Carcinus moenas, (Linn.).

Cancer marinus sulcatus, Rumph, Amboinsch. Bariteitk. pl. vi. fig. O.
Cancer meenas, Linnsous, Fauns Suecica p. 492 ; Mas. Ladov. Ulric. p. 436 ; and Byst. Nat. (xii) I. p. 1043 : ["Pennant Brit. Zool. IV. p. 8, pl. ihi. fig. 5 " sec. Milne Edwards]: Baster, Naturkundige Uitopanningen Zeeplanten en Zee Insekten, Haarlem 1765, II. pl. ii. fige. 1-8 : Herbst, Krabben, I. ii. 145, pl. vii. fig. 46 : Fabricing, Fnt. Syst. II. p. 450, and Suppl. p. 334 : Bosc, Hist. Nat. Crust. I. p. 173, pl. iii. fig. 1 : Latreille, Hist. Nat. Crust. V. p. 868 : Risso, Hist. Nat. Crust. Nice, p. 12 : Lamarck, Hist. Nat. Anim. sans Vertebr. V. Crust. p. 270 : Dumeril in Dict. Sci. Nat, XI. 1818, p. 299 : de Brebisson, Mem. Soc. Linn. Calvados, 1825, p. 283.

Portmsus msenas ["Leach, Edinb. Fncyol. VII. p. 890 " sec. Milne Fdwards]: Costa, Faun. Regn. Napoli, Crost. Brach. p. 7.

Carcinus nesenas, ["Leach, Fdinb. Fnoyol. VII. p. 429" sec. Milne Fdwards] ; and Trans. Linn. Soc. XI. 1815, p. 814 ; and Malac. Pod. Brit. pl. v: Desmarest, in Diot. Sci. Nat. XXVIII. 1823, p. 217 ; and Consid. Gen. Crust. p. 91 : Risso, Hist. Nat. Eur. Mérid V. Crust. p. 7 : Audouin, Explic. p. 84 : Savigny Descr. Eigypt. Crust. pl. iv. fig. 6 : Milne Frdwards in Cuvier Regne Anim. pl. x. fig. 8 and Hist. Nat. Crust. I. 484: ["Gould, Report on the Invertebrata of Massachusette, p. 321 " sec. A. Milne Edwards]: De Kay, Zoology of New York, pt. VI. Crust. p. 8, pl. v. figs. 5, 6 : Lucas, Hist. Anim. Artic. in Expl. Sci. Algerie, Zool. I. i. p. 18 ; and Hist. Nat. Anim. Art. p. 95 : Bell, British Stalk-eyed Crust. p. 76 : Salter, Journ. Linn. Soc., Zool., IV. 1860, p. 34 (process of moulting): A. Milne Edwards, Archiv. du Mus. X. 1801, p. 391 : Van Beneden, Bech. Fann. Litt. Belg. p. 183 : Heller, Crust. Sudl. Burop. p. 91, pl. ii. figs. 14, 15; and Novara Crust. p. 30: W. C. McIntosh, Trang. lim. Soc. XXIV. 1864, p. 79, pl. xix., xx. (on the various kinds of hairs): Sars, vide Zool. Rec. III. 1866, p. 224: Nardo, Annot. Crost. p. 87 : Wood-Mason, Proc. Asiatic Soc. Bengal, 1873, p. 172, and Ann. Mag. Nat. Hist. (4) XII. 1874, p. 405 : Brocchi, Ann. Sci. Nat. (6) II. 1875, Art. 2, p. 62, pl. xvi. figs. 89, 90, 100, 101. (male parts) : Streets, Bull. U. S.Nat. Mus. VII. 1877, p. 109 : Meinert, Nat. Tide., Copenhagen, (3) XI. 1877, p. 228, and (3) XII. 1879, p. 507 : Kingaley, Proc. Ac. Nat. Sci. Philad. XXX. 1878, p. 321, and XXXI. 1879, p. 398 ; Nanck, Zeitg. Wise. Zool. XXXIV. 1880, p. 56 (gastric teeth) : Boas, Stud. Decapod. (Vid. Selsk. Skr. (6) I. 8) p. 141 : S. I. Smith, Trans. Conn. Acad. V. p. 84: Carrington and Lovett, Zoologist (3) VI. 1882, p. 12 : Carus, Prodr. Faun. Medit. I. p. 518 : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 222 : Mobins, 8B. AK. Berl. 1898, pp. 75, 76 : Ortmann, Zool. Jahrb. Syst., etc., VII. 1893-94, p. 423 : Birula, Ann. Mus. Zool. Petersb. 1807, p. 448.

Carapace about three-fourths as long as broad, the regions fairly well defined, the gastric being divided into three areolm, the surface finely granular, especially in the anterior half.

Front cat into three lobes, of which the middle one is acuminate.
Antero-lateral borders rather shorter than the postero-lateral, cat into five anteriorly-acuminate teeth. Posterior border forming a carve with the postero-lateral borders.

Orbits without any particular dorsal inclination, their major diameter abont half the width of the inter-orbital space. Antennal flagella about $1 \frac{1}{2}$ times the length of the orbit.

Chelipeds a little unequal, the longer one is less than $1 \frac{1}{2}$ times the length of the carapace : the inner angle of the wrist is spiniform and there are two coster along the apper surface of the hand, otherwise they are smooth and unsculptured. Palm deep and fall, but not inflated, fingers stoat, nearly as long as the palm in the shorter cheliped only.

Legs stoat, smooth, unarmed : the 2nd and 3rd pairs, which are the longest, are about $1 \frac{1}{3}$ times the length of the carapace: the fourth pair, which are also slightly longer than the larger cheliped, are a little shorter than the first pair.

Sixth abdominal tergam of male abont twice as broad as long, with gradually convergent sides.

In the Indian Museum is a single male from Galle (Ceylon), besides numerous specimens from the Mediterranean and the North Sean

The geographical distribution of Carcinus msenas has been referred to by several of the authors above-cited. The species has been found at varinus places on the Atlantic coast of the Northern United States and off the coast of Pernambaco (Brazil) : it is the common shore-crab of the British Islands, and occurs in the North Sea almost ap to Arctic limits, in the Baltic, and on the Atlantic coasts of the Earopean continent: it is common in all parts of the Mediterranean, and has been found in the Black Sea and the Red Sea : it is an Indian species, though evidently a very rare one, and has been reported from the Hawaiian Islands, from the Bay of Panama, and-though there is doubt about this locality--from Anstralia.

Its range in fact corresponds very nearly with that of the Macruroid fish Macrurus (Malacocephalus) Lsevis Lowe, and recalls that of the Perciform fish Lobotes surinamensis.

In an Account of the Investigator Deep Sea Madreporaria, recently published by the Trustees of the Indian Museam, I have given lists of 43 species of marine animals that are common to the slopes (including both American and European sides) of the Atlantic and of the Oriental Region and Western Pacific, and in a subsequent Account of the Investigator Deep Sea Brachyura, also published by the Trustees of the Indian Museum, I have added several species of Crabs that are fonud both in American-Atlantic and in East-Indian waters: moreover, Captain A. R.S. Anderson, who is engaged in examining the Investigator Echinoids, has discovered some interesting affinities between the West-Indian, the Mediterranean, and the Oriental Echinoid fauna. So that the distribution of Oarcinus menas is not so singular as has been sapposed.

The significance of this distribution has been discussed in the works jnst cited : it is emphasized by the fact that Carcinus menas is a shore-crab.

Sub-family II. PORTUNIN x.

Benthochascon, Alcock.
Benthochascon Hemingi, Aloock and Anderson, Ann. Mag. Nat. Hist., Jan. 1899, p. 10.

Benthochascon, Alcock, Investigator Deep Sea Brachyura, p. 68.
Carapace sub-quadrate, nearly as broad as long, its anterior portion arched and declivous, its postarior portion flat, the regions hardly. defined : no transverse ridges.

Front not very well demarcated from the inner supra-orbital angles, about a fourth the greatest breadth of the carapace in width, cat into 3 (or 4) teeth.

Antero-lateral borders much shorter than the postero-lateral, cut into four teeth including the outer orbital angle. Posterior border broadly excised.

Orbits with indistinct traces of two grooves in the upper border, the lower border concave with the inner angle dentiform and prominent. The antennules fold nearly transversely.

Basal antennal joint short, but longer than broad, freely movable; the flagellum, which is not very long, stands in the orbital hiatus.

Epistome of good length fore-and-aft, not only in the middle but at the sides, well delimited from the palate, not encroached npon by the external maxillipeds. Buccal cavern square, rather broader than long; the external maxillipeds not elongate, their merus as broad as long. The efferent branchial channels defined by ridges.

Chelipeds massive, shorter than any of the first 3 pair of legs, slightly unequal : arm short, without spines : inner angle of wrist alone spiniform : hand deep, smooth or nearly so : fingers stout, as long as or longer than hand, strongly toothed.

Legs stoutish : in the last pair the merus is elongate, the carpus is shortened and somewhat broadened, and the propodite and dactylus are typically foliaceons for swimming.

2. Benthochascon Hemingi, Alcock and Anderson.

Benthochascon Hemingi, Alcock and Anderson, Ann. Mag. Nat. Hist, January, 1899, p. 10: Alcock, Investigator Deep Sea Brachyura, p. 69, pl. iii. fig. 2.

Carapace almost as broad as long, smooth (though finely frosted) except for slight inequalities of level that scarcely define the regions, strongly declivous in its anterior third.

Front cut into three lobes of which the middle one is bifid at tip : the front is separated from the inner supra-orbital angles by a groove, not by 2 notch.

Antero-lateral borders considerably less than two-thirds the length of the postero-lateral, cut into four teeth (including the outer orbital angle) of which the last is spiniform and is rather remote from the others.

Posterior border peculiar in being quite flash with the surface of the carapace, and concave or broadly excised.

Orbits large, their major diameter three-fourths the width of the front, without any dorsal inclination : there are two indistinct grooves in the upper border, and the lower border is concave with the inner angle prominent and acntely dentiform. Eyes large, placed mostly on the ventral surface of the eyestalk.

Antennal flagella not much longer than the orbit.
The external maxillipeds fall considerably short of the anterior edge of the palate.

Chelipeds somewhat anequal, the larger one is between $1 \frac{1}{2}$ and $1 \frac{1}{3}$ times the length of the carapace: except for a sharp tooth at the inner angle of the wrist, and for a small sharpish tabercle at the far end of the sharply-defined inner border of the hand, they are smooth and unsculptured. The hands are full and very deep: the fingers are stout but end in acate hooked tips : in the smaller cheliped, but not in the larger cheliped, they are longer than the hand.

Legs stoatish, compressed, a notch and tooth at the far end of the anterior border of the merus of all. The 2nd pair, whieh are slightly longer than the lst and 3 rd , are from $1 \frac{1}{8}$ times to twice the length of the carapace: all three end in a very acute styliform dactylus. The 4th pair, which are abont equal in length to the chelipeds, have the merus four times as long as broad, the carpus not particularly dilated, and the propodite and dactylus typically foliaceons and blade-like, the dactylus however ending in an acately mucronate tip: the posterior border of the meras is unarmed.

In the Indian Museam are two specimens, both females, from the Andaman Sea 185 and 405 fms . The carapace of the larger one is 48 millim. long and 51 millim. broad.

Paratiranites, Miers.

Iupocyclus (Parathranites) orientalis, Miers, Challenger Brachyura, p. 186.
Carapace hexagonal, convex, moderately transverse, the regions well defined and with some definitely-placed tabercles bat no transverse ridges.

The front, which projects beyond the ill-defined inner supra-orbital angles, is less than a fourth the greatest breadth of the carapace in width, and is cat into four toeth.

Antero-lateral borders oblique, not much ourved, cut into five teeth including the onter orbital angles.

Orbits with two wide fissares in the upper margin, the lower margin concave with the inner angle dentiform and prominent. The antennules fold transversely.

Basal antennal joint longer than broad, slender, not nearly filling the orbital hiatus, movable; the flagellum, which stands in the orbital hiatas, long.

Epistome short fore and aft, sunk; though well enough delimited from the palate somewhat encroached upon by the external maxillipeds. Buccal cavern square, its greatest length about equals its greatest breadth : external maxillipeds rather elongate, especially the merus.

Chelipeds moderately massive, shorter than any of the first 3 pair of legs ; arm wrist and hand with spines; hand prismatic, fingers stout and strongly toothod.

Legs long and slender: in the fourth pair the meras and carpus though shortened are not mach broadened, and the propodite and dactylus are foliaceons and typically paddle-like.

The abdomen of the male consists of 5 segments, the 3rd-5th terga being fused.

As Miers aays, this genus is allied to Bathynectes : in fact it is nearer to Bathynectes than to Lupocyclus.

3. Parathranites orientalis, Miers.

Lupocyclus (Parathranites) orientalis, Miers, Challenger Brachyura, p. 186, pl. xvii. fig. 1.

Carapace about three-fourths as long as broad (spines included), decidedly convex, the regions well demarcated, the sarface granular and somewhat hairy-especially at the antero-lateral margins. There is always a tabercle in the middle line on the posterior part of the gastric region and sometimes three, in a transverse series, in front of it : there are one, or two close side-by-side, in the middle of the cardiac region, and from two to four in a fairly longitudinal series along the inner limit of either epibranchial region.

Front hardly delimited from the almost obsolete inner supra-orbital augles beyond which it projects, cut into four horizontal subacute teeth of nearly equal size.

Antero-lateral borders cat into 5 teeth, of which the first (the outer orbital angle) is remarkably prominent, the next three are very scately anteriorly-acuminate, and the last-equally acate-stands out nearly at right angles to the others.
J. . 1.3

Posterior border nearly straight, making a dentiform angle of junction with the postero-lateral borders.

Orbits deep, without any particular dorsal inclination, their major diameter nearly equal to the width of the front; the inner angle of the lower border bilobed, the inner lobe dentiform and projecting beyond the level of the tips of the frontal teeth.

Merus of external maxillipeds prodnced a good deal beyond the articulation of the flagellum.

Chelipeds moderately massive, their length not $1 \frac{1}{8}$ times that of the carapace: a spinule at the far end of the anterior border of the ischinm : a spine near the middle of the anterior border, and a spinule near the far end of the posterior border, of the arm : the inner angle of the wrist is produced to form a spine nearly half as long as the palm, and on the outer surface of the wrist are 3 spinules of which one is almost a spine : hand not inflated, its upper surface with 2 costee and 3 spines of which the one at the far end of the inner border is the largest; a faint ridge along the outer sarface of the hand, and one or two along the inner surface : fingers stout, nearly as loug as the hand.

First 3 pair of legs long and slender, the first pair well over twice the length of the carapace. The fourth pair are very little shorter than the chelipeds and have the merus slender and quite unarmed.

2nd and 3rd abdominal terga strongly carinated in both sexes : the 6th tergum of the adult male is nearly as long as broad and has nearly parallel sides.

Colours in life salmon-pink above, tips of spines red.
In the Indian Museum are 54 specimens from off the Malabar coast 56.68 fms., off the Coromandel coast 33 fms., and from the Andamans.

The carapace of the largest specimen is 12 millim. long and 17 millim. broad.

Sub-family II. CAPHYRINA.

Lisbocarcinus. Adams and White.
Lissocarcinus, Adams and White, Samarang Crust. p. 45 : A. Mine Edwards, Ann. Sci. Nat. Zool., (4) XIV, 1860, p. 228, and Arohiv. du Mus. X. 1861, p. 417 : Miers, Challenger Brachyura, p. 204,

Asecla, Streets, Bull. U. S. Nat. Mus. VII. 1877, p. 110.
Carapace either not, or very little, broader than long, smooth or with a single ridge running obliquely inwards from the last tooth of either antero-lateral border.

Front prominent beyond the inner supra-orbital angles which may be either well or rather ill detined, laminar, subentire or distinctly notched
in the middle line, its breadth (exclusive of the inner sapra-orbital angles) is from hulf to a third the greatest width of the carapace.

Antero-lateral borders little oblique, moderately arched, cat into five lobes or teeth, including the outer orbital angle.

Basal antenna-joint short but not peouliarly broad, its onter angle is produced as a lobule that meets the front and fills the orbital histas so as to exclude the flagellum.

The two fissures in the apper edge of the orbit may be distinct, or may be almost indistinguishable. The antennules fold nearly transversely or a little obliquely.

Epistome short, and though well enough demarcated from the palate, somewhat overlapped by the external maxillipeds. Buccal cavern squarish, broader than loug, the efferent branchial channels well defined.

Chelipeds short, bat a little longer than the legs: arm short, without any distinct spines, only the inner angle of wrist dentiform; palm not prismatic, fingers stout and rather shorter than the palm.

The propodite and dactylus of the last pair of legs are typically folisceons swimming paddles, bat the carpus and merus are not particularly dilated.

The abdomen of the male consists of 5 pieces, the 3 rd- 5 th terga being fused.

Lissocarcinus is distinguished from Thalamonyx chiefly by the subcircular or obovate carapace and by the stumpy little sculptured chelipeds.

Key to the Indian species of Lissocarcinus.

I. Carapace as long as broad, flat, obovate ; front broadly triangular, notched at tip L. polybioides.
II. Carapace broader than long, convex :-

1. Carapace sub-rotund; front sab-entire, being dorsally grooved but not notched in the middle line, sapraorbital angles obscurely defined
...
2. Carapace distinctly broader than long; front out into two broad lobes exclasive of the well defined dentiform supra-orbital angles L. Levis.

4. Lissocarcinus polybioides, Adams and White.

Liesocarcinus polybioides, Δ dams and White, Samarang Crust. p. 46, pl. xi. fig. 5: A. Milne Edwards, Archiv. du Mas. X. 1861, p. 417 : Haswell, Cat. Anstral. Crust. p. 83: Miera, Ohallenger Brachyura, p. 205: J. B. Henderson, Trans. Linn. Soo. Zool., (2) V. 1893, p. 378.

Carapace as long as broad, obovate with the posterior part truncated and much constricted, flat, smooth except for a low transverse ridge passing obliquely inwards from the last tooth of either auterolateral border.

Front projecting far beyond the well pronounced inner supraorbital angles, lamellar, horizontal, broadly triangular with the apex rather deeply notched: its breadth (not including the inner sapraorbital angles) is a little less than half the greatest breadth of the carapace.

Antero-lateral borders curved, cut into 5 anteriorly acaminate teeth (including the onter orbital angles) of which the first is the largest and the 5 th the smallest.

Posterior border of dorsum of carapace forming a curve with the postero-lateral borders.

Orbits small, their major diameter less than a third the width of the inter-orbital space; two faint grooves in the upper border, the inner angle of the lower border dentiform bat not prominent.

Chelipeds moderately stont, longer and stonter than the legs, a little longer than the carapace: inner angle of wrist dentiform, two or three little points-of which one is slightly larger than the others-on the outer angle: hand smooth, except for 2 crests-each of which ends in a tooth-on the upper surface, and for a small tabercle in front of the apex of the wrist-joint : fingers stont, a little shorter than the palm.

Merus of last pair of legs twice as long as broad; its posterior border, like that of the propodite, is amooth and unarmed.

6th abdominal torgum of male longer than broad, with slightlycurved gradually convergent sides.

Aternum elongate-oval particularly so in the male.
In the Indian Museum are 11 specimens, from Madras, from Orissa and Ganjam coasts $13-28$ fmb., from Malabar coast 28 fms., and from the Andamans.

A small species : the carapace of an egg-laden female is 7 millim. in both diameters.

5. Lissocarcinus orbicularis, Dana.

Lissocarcinus orbicularis, Dans, Proo. Ac. Nat. Soi. Philad. 1852, p. 86, and U. S. Expl. Exp. Orust. pt. I. p. 288, pl. xviii. fig. la-e: A. Milne Edwarde, Arohiv. da Mus. X. 1861, p. 418 : Kichter in Mobins Meeresf. Manrit. p. 154: Miers, Zool. H. M. S. Alert, pp. 618, 541, and P. Z. 8. 1884, pp. 10, 12, and Challenger Brachyara, p. 205 : Ortmanu, Zool. Jahrb., Syst., VII. 1893.94, p. 87.

Lissocarcinus pulchellus, Maller, Verh. Nat. Ges. Basel, VIII. pp. 475, 482, pl. V. fig. 6.

Carapace slightly broader than long, sub-circular, convex with thin edges, smooth except for a more or less distinct ridge or elevation ranning obliquely inwards from the last tooth of either antero-lateral border.

Front projecting a little beyond the supra-orbital angles (which are not well prononnced), arched, entire though dorsally concave in the middle line, its breadth is between a half and a third the greatest breadth of the carapace.

Antero-lateral borders carved, divided into five lobes, or, rather, broad flat puckers.

Orbits small, their major diameter is abont a foarth the width of the inter-orbital space: two closed fissures near the outer end of the upper margin; inner angle of lower margin dentiform bat not prominent.

Antennal flagella short.
Chelipeds a little longer than the carapace: inner angle of wrist dentiform : apper surface of hand with two carin*, each ending in a blant tooth, there is also a little taberole in front of the apex of the wrist joint and an obscure ridge along the oater surface : fingers stout, a little shorter than the palm, the dactylus sharply carinate dorsally.

Legs stoat, slightly shorter than the chelipeds, the meras of the last pair is about twice as long as broad and its posterior border, like that of the propodite, is smooth.

Coloars very characteristic : carapace dark maroon (chocolate in spirit) with symmetrical yellow markings, chelipeds and legs crossbanded yellow and maroon.

In the Iudian Museiam is a single egg-laden female from Kiltín I. (Laccadives) : its carapace is 10 millim. long and 11.5 millim. broad.

6. Lissocarcinus levis, Miers.

Lissocarcinus levis, Miers, Challenger Brachyura, p. 205, pl. xvii, fig 8 : J. R. Henderson, Trans. Linn. Soc. Zool., (2) V. 1898, p. 878.

Carapace distinotly broader than long, convex, perfectly smooth.
Front a little prominent beyond the well pronounced sapra-orbital angles, divided into two broad lobes, its breadth (not including the supra-orbital angles) is barely a third the greatest breadth of the сагарасе.

Antero-lateral borders carved, out into 5 blunt lobes, of which the first and last are the smallest.

Orbits large, their major diameter nearly half the width of the inter-orbital space, their upper border entire, though traces of the two satures may be visible.

Cbelipeds rather longer than the carapace; a small lobule at the far end of the anterior border of the arm, inner angle of wrist stontly spiniform, hand smooth except for a tiny tubercle in front of the apex of the wrist joint.

First 3 pairs of legs slender : merus of last pair less than twice as long as broad, its posterior border ending in an almost dentiform carina.

6th abdominal tergum of male broader than long, broadest in the middle, its sides therefore curved.

In spirit the carapace is white with some purplish-brown markings.

In the Indian Museum are 9 specimens, from off Ceylon $26 \frac{1}{2}$ fms., off the Malabar coast 26-31 fms., off Mergni 40 fms . and from the Andamans.

The largest specimen has a carapace 9.5 millim. long and 11 millim. broad.

Sub-family III. LUPIN 居。

Alliance I. Lupocycloida.

Lupocyclus, Adams and White.

Lupocyclus, Adams and White, Samarang Crust. pp. 46, 47: A. Milne Edwards, Ann. Sci. Nat., Zool., (4) XIV. 1860, p. 288, and Archiv. du Mas. X. 1861, p. 387 : Miers, Challenger Brachyura, p. 185 (not subgenus Parathranites).

Carapace little broader than long, or even sub-circular, convex, the regions faintly indicated, with granular transverse ridges of definite position.

Front proper (not including the rather obscurely defined redaplicated inner sapra-orbital angles) prominent and cut into 4 teeth.

Antero-lateral borders moderately oblique and moderately curved, about equal in length to the postero-lateral, cut into 5 or 6 teeth (including the outer orbital angle) with little denticles in some or all of the interdental spaces, bringing the total number to 9 . (The deuticles are sometimes so small as to escape notice).

Orbits large with a considerable dorsal inclination: the upper border with 2 fissures: the inner angle of the lower border though dentiform does not project anywhere near the level of the tips of the middle frontal teeth. The antennules fold transversely.

Basal antenna-joint about as long as broad, filling the orbital hiatus; not quite firmly fixed; flagellum long, standing in the orbital hiatus.

Epistome short, somewhat sunken. Buccal cavern somewhat broader than long : efferent brauchial channels well defined.

Chelipeds very long, much longer than any of the legs, rather slender, the hand slenderer than the arm : the arm with spines, both inner and outer angles of wrist spiniform, the hand with spines and costm, the fingers long and slender.

Legs slender: propodite and dactylus of last pair typically foliaceous and blade-like for swimming.

Abdomen of male five-jointed the 3rd-5th terga being fused : the first tergam almost concealed beneath the carapace.

Key to the Indian species of Lupocyclus.

I. Frontal teeth blant-pointed; chelipeds less than three times the length of the carapace, the arm being stout and prismatio: meras of last pair of legs broadened and com. pressed L. rotundatus.
II. Frontal teeth acutely pointed : ohelipeds more than three times the length of the carapace, the arm being alender and oglindrical : merus of last pair of legs slender L. strigosus.

7. Irupocyclus rotundatus, Adams and White.

Lupocyclus rotundatus, Adams and White, Samarang Crust. p. 47, pl. xii. fig. 4 : A. Milne Edwards, Archiv. du Mas. X. 1861, p. 387 : de Man, Notes Leyden Mue. V. 1883. p. 153 : Miers, Zool. H. M. S. Alert, pp. 184, 234, and Ohallenger Brachyura, p. 186. See also de Man, Zool. Jahrb., Syst. etc., II. 1886-87, p. 718.

P Goniosoma inæquale, Walker, Journ. Linn. Soc., Zool., XX. 1886-90 (1887) p. 116, pl. viii. fig. 4.

P Lupocyclus in£qualis, Henderson, Trans. Linn. Soo. Zool. (2) V. 1893, p. 378.
Carapace sub-circular in the young bnt becoming as mach as fivesixths as long as broad in large individuals, convex, subtomentose, its surface broken by transverse granular ridges which are similar in number and position to those of Neptunus (Lupocycloporus) whitei A. M. Edw. but are more elevated and discontinuous and therefore look more like series of tubercles.

Front prominent beyond the dorsally-grooved, or reduplicated, inner supra-orbital angles, cut into four teeth of not very unequal size, of which the middle two are the most prominent and the most acute. Supra-orbital margin with two sutures or not very open fissures.

Antero-lateral borders cat into five rather coarse teeth (including the onter orbital angle), and in every one of the interdental spaces there is a denticle: these intervening denticles are so small in young individuals that some of them may escape notice, but in large individuals they are all very distinct. Posterior border straight, but forming a curve with the postero-lateral borders.

Antennal flagella more than half as long as the carapace.
Chelipeds rather more than $2 \frac{1}{2}$ times the length of the carapace in the male, and having the same form and proportions as those of Neptunus (Lupocycloporus) whitei, the arm being much stouter than the hand and the surface of most of the segments being granular with a squamiform sculptare: 5 spines on the anterior border of the arm and 2 in the distal third of the posterior border : hand and wrist slender, costate-the costee granular : a spine at the inner and the outer angles of the wrist: hand with 3 spines, one being in front of the apex of the wrist-joint, the other two being side by side some little distance behind the finger-joint. The fingers are stoatish, as long as the hand, and are gently incurved, but have the extreme tips sometimes slightly bent outwards: their opposed edges have jagged teeth like those of any Neptunus.

The first three pair of legs are slender. The fourth pair have all their joints broadened as in any Neptunus, though the merns and carpas are not quite so broad, relatively, as in that genas; there is a spine near the far end of the posterior border of the merns of this pair.

The 2nd and 3rd abdominal terga are sharply and decidedly carinate.

In the Indian Maseam are 14 speoimens representing both sexes and several ages, from the Andaman Sea up to 55 fms. and from off Ceylon $26 \frac{1}{2}-32$ aud 34 fms . The largest male has the carapace 15 millim. long and 19 millim. broad, bat there are two egg-laden females only about half this size.

The four smallest specimens are identical with White's figure of Lupocyclus rotundatus, the two largest specimens agree with Walker's description and figure of Goniosoma inæoquale, the six middle-sized specimens cannot be decisively separated from either: I therefore think that all belong to one species.

8. Lupocyclus strigosus, n. sp.
 (an Lupocyclus philippinensis, Semper, Nanck ?)

Except in the form of the chelipeds (which are even slenderer than those of Lupa forceps) and last pair of legs, this species is very mach like L. rotundatus, from which it differs in the following characters :-
(1) the carapace is perhaps a little more nearly circular, and is distiuctly more convex :
(2) the front is more prominent, is practically confluent with theinner sapra-orbital angles, and is cut into four sharp teeth, of which the middle two are much smaller than the others:
(3) the antero-lateral borders are armed with five slender spiniform teeth not including the oater orbital angle, and the denticles of the interspaces are represented by granules or are quite inconspicuons:
(4) the chelipeds in the male are $3 \frac{3}{4}$ times the length of the carapace and are very slender, especially in the palm : there are 6 or 7 spines along the anterior border of the arm, which is a slender cylindrical joint, and two mach smaller ones in the distal fourth of the posterior border: the fingers are considerably longer than the palm, are extremely slender, and their opposed edges are armed with close-set fine regular teeth having larger acicular teeth at fairly regular intervals-much as in the Leacosine genus Arcania:
(5) the last pair of legs, though otherwise similar to those of L. rotundatus, have the basal joints, up to and including the carpas, slender, sub-cylindrical, and, in fact, hardly stouter than the corresponding joint of the other legs.

In other respects this species agrees with L. rotundatus.
In the Indian Maseam are five specimens-from the Andaman Sea 15 fms ., from off the Madras coast, 33 fms ., and from off the Koukan coast, $56-58 \mathrm{fms}$.

In the type specimen the carapace is 8 millim. long and 9 millim. broad.

Cardpa, Dana.

Carupa, Dana, Silliman's Amer. Journ. Sci. and Arts (2) XII. 1850, p. 129 ; Proc. Ac. Nat. Sci. Philad. 1852, p. 85 ; and U. S. Expl. Exp. Crust. pt. I. p. 279 : A. Mine Efdwards, Ann. Sci. Nat., Zool.; (4) XIV. 1860, p. 228, and Archiv. du Mus. X. 1861, p. 886.

Carapace transverse, broad, moderately convex, with smooth nubroken surface.

The front proper projects slightly beyond the rather ill-defined inner sapra-orbital angles, and is either broadly bilobed or cut into four shallow lobes: its breadth is about a fourth the greatest breadth of the carapace.

Antero-lateral borders moderately oblique and arched, about the same length as the postero-lateral, cut into 7 rather irregular lobes (inclnding the outer orbital angles).

The orbit, which has little or no dorsal inclination, has two notches in its upper border; the lower border crenulate. The antennales fold almost transversely.

Basal antenna-joint as long as broad, rather slender ; the flagellum, which is of moderate length, stands in the orbital hiatus.
J. 11. 4

Epistome sufficiently long. Buccal cavern squarish, broader than long, the efferent branchial channels very well defined.

Chelipeds longer and vastly more massive than the legs : arm with spines, one or both angles of wrist spiniform ; palm inflated, massive, nearly smooth : fingers stout, hardly as long as palm, strongly toothed.

Legs slender: in the fourth pair the merus is elongate and the carpus slender, but the propodite and dactylus are typical swimming paddles.

First abdominal tergum narrow, almost hidden by the carapace: in the male the $2 \mathrm{nd}-5$ th terga are fused-though the suture between the 2nd and 3rd may be visible-so that the abdomen consists of 4 pieces only.

9. Carupa l\&eviuscula, Heller.

Carupa leeviuscula, Heller, Verh. zool. bot. Gep. Wien, XII. 1862, p. 5̣20, and Novara Crust, p. 27, pl. iii. fig. 2 : de Man, Notes Leyden Mas. V. 1883, p. 152, and Archiv. f. Naturges. LIII. 1887, i. p. 336 : Ortmann, Zool. Jahrb., Syat. VII. 1898-94, p. 68 and in Semon's Forsohungar. Crust. (Jena. Denk. VIII) p. 44 : Zehntner, Rev. Suisse Zool. II. 1894, p. 161.

Carapace about $\frac{8}{8}$ as long as broad, perfectly smooth to the naked eye, frosted with minute granules under the lens.

Front cat into 4 shallow lobes, of which the middle two are the narrowest. Supra-orbital margiu with two notches, infra-orbital margin cut into four lobes of which the middle two are the narrowest.

Antero-lateral borders cut into 7 teeth (including the onter orbital angle), of which the 5 th is the smallest and the 6th the largest and most acute. The postero-lateral angles of the carapace are well defined.

Antennal flagella more than half the length of the carapace.
Chelipeds aboat $2 \frac{1}{4}$ times the length of the carapace, in the male : arm short with 3 claw-like spines on the anterior border, the posterior border being smooth : inner angle of wrist strongly spiniform, the onter angle rounded, but armed with a spinule below : hand smooth, its apper border well defined.

In young specimens, as in the young of Scylla serrata, there may be two faint costae or two lines of small granales along the upper surface of the hand, and also there may be some costiform lines of small granules on the apper surface of the wrist.

The legs are slender and smooth : the last pair have only the last two joints dilated for swimming.

In the Indian Museum are two specimens (one badly damaged) from the Andamans and one from the Madras coast-besides' one from Samoa and one from Mauritius.

Alliance II. Lupoida.

Scylla, De Haan.
Scylla, De Haan, Fann. Japon. Orust. p. 11: A. Milne Edwards, Ann. Sci. Nat., Zool., (4) XIV. 1860, pp. 228, 240, and Arohiv. du Mus. X. 1861, p. 847 : Miers, Challenger Brachyura, p. 184.

Carapace transverse, broad, moderately convex, with an almost unbroken surface.

Front proper well delimited from the inner supra-orbital angles, cat into four teeth : its breadth (not including the supra-orbital angles) is between a fourth and a fifth the greatest breadth of the carapace.

Antero-lateral borders oblique, arched, longer than the posterolateral, cut into 9 teeth of nearly equal size.

Orbit withont any dorsal inclination : two nearly closed fissures in its apper wall: the inner angle of the lower border dentiform and prominent. The antennules fold nearly transversely.

Basal antenna-joint short and broad, its antero-external angle prodaced to form a lobule lying in the orbit: the flagellum, which is of good length, stands in the orbital hiatus.

Epistome sufficiently long fore and aft, not sunken. Buccal cavern squarish, broader than long: the efferent branchial channels cavernous, but not defined by ridges.

Cbelipeds massive, longer than any of the legs: arm wrist and hand with definitely placed spines: hand deep and full, not prismatic, not costate.

Legs stout, moderately compressed : in the fourth pair the merus and carpus are shortened and broadened, and the propodite and dactylus are typically foliaceous for swimming.

Abdomen of male rather broadly triangular, consisting of 5 seg ments, the 3rd-5th terga being fused. The first tergum is much concealed beneath the carapace.

[^0]l'ile Rénnion, Anneze F' p. 2 : Hess Archiv. f. Naturges. XXXI. 1865, i. pp. 139, 172 : Heller, Novara Crust. p. 27 : Miers, Crust. New Zealand, p. 27 : Hilgendorf, MB. AK. Berl. 1878, p. 799 : E. Nauck, Zeits. Wiss. Zool. XXXIV. 1880, p. 59, pl. i. figs. 22, 24 (gastric teeth) : Haswell, Cat. Austral. Crust. p. 79: Miers, Ann. Mag. Nat. Hist. (5) V. 1880, p. 238 ; and Zool. H. M. S. Alert, pp. 518, 538 ; and Challenger Brachyara, p. 185 : Filhol, Crust. N. Zel., Miss. ile Campbell, p. 382 : de Man, Archiv. Naturges. LIII. 1887, i. p. 332; and in Weber's Zool. Ergebn. Niederl. Ost. Ind. II. 1892, p. 285 : Cano, Boll. Soo. Nat. Napol. III. 1889, p. 215: Ortmann, Zool. Jahrb. Syst. VII. 1893, p. 78, and in Semon's Forschungsr. (Jena-Denk. VIII.) Crust. p. 45 : Henderson, Trans. Linn. Soc. Zool., (2) V. 1893, p. 372.

Scylla tranquebarica, Dans, U. S. Expl. Exp. Crust. pt. I. p. 270 : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 38.

P Achelous crassimamus, Macleay Ill. Annulosa. S. Afr. p. 61, (sec. A. M. E.).
Carapace about $\frac{2}{8}$, or a little less, as long as broad, practically smooth, except for a faint granular ridga running obliquely inwards across either branchial region from the last spine of the antero-lateral border.

Front cut into four lobes or bluntish teeth of about equal size and prominence. Antero-lateral borders cut into 9 sharply acuminate teeth of about equal size: posterior border forming a curve with the posterolateral borders, the points of junction sometimes slightly thickened.

Merus of external maxillipeds obliquĕ but not having the anteroexternal angle distinctly produced in a lateral direction.

Chelipeds not quite twice the length of the carapace in the adult male, but shorter than this in the female and young male. Arm with 3 spines on the anterior border, and 2 on the posterior border-one terminal, the other submedian : a strong spine at inner augle of wrist, the outer angle being rounded and armed with one, or sometimes two, small spines or teeth : hand with 3 spines or tabercles, one being in front of the apex of the wrist-joint, the other two being side by side behind the finger-joint - (the outer of these two is sometimes obsolescent).

Legs unarmed.
Abdomen of male broadly triangular.
An extremely common crab in all the estuaries and backwaters of India, from Karáchi to Mergai. It grows to a large size.

In young specimens the frontal lobes are broad and indistinct, the upper surface of the palm is traversed by two faint but distinct longitudinal costex, and there may be a transverse granular line across the gastric region.

This is the common edible crab of India.

Neptunus, De Haan, A. Milne Edwards, Miers.

Neptunus, De Haan, A. Milne Edwards, Ann. Sci. Nat., Zool., (4) XIV. 1860, p. 226 and Archiv. du Mas. X. 1861, p. 314 (ubi syn.)

Neptunus, Achelous, Amphitrite, Pontus, De Haan, Faun. Japon. Crust. pp. 7, 8, 9.

Posidon, Herklots, Add. Fann. Carcin. Afric. Ooc. p. 3.
Lupa, Arenaeus, Amphitrits, Dans, U. 8. Expl. Exp. Orust. pt. I. pp. 270, 275, 209.

Euctenota, Gerstaecker, Archiv. f. Naturges. XXII. 1856, i. p. 131.
Neptunus, Achelous, A. Milne Edwards ope. cit.
Callinectes, Stimpeon, Ann. Lyo. Nat. Hist. New York, VII. 1860, p. 220.
Xiphonectes, A. Milne Edwrids, Nouv. Archiv. du Mns. IX. 1873, p. 157.
Hellenus, A. Milne Edwards, Miss. Sci. Mex., Crust. pp. 210, 221.
Neptunus, Xiphonectes, Miers, Challenger Brachyura, pp. 171, 183.
Portunus, M. J. Rathbun, see Proo. Biol. Soc. Washington, Jnne, 1897, pp. 155, 160.

Carapace usually transverse, broad, and depressed or little convex, often with the sarface areolated.

Front proper well delimited from the inner supra-orbital angles and cat into from 3 to 6 -usually four-teeth : its breadth (not including the supra-orbital angles) is from a sixth to a fifth the greatest breadth of the carapace (lateral epibranchial spines not included), and it is often somewhat receding.

Antero-lateral borders oblique, arched, longer than the posterolateral, cut into 9 regular teeth (including the outer orbital angle) of which the 9th may be enlarged or not.

The orbit usnally has 2 fissures or sutures in the apper border, which border is less prominent than the lower border, so that the orbit very often has a dorsal inclination : the lower border has a fissure or suture near the ontar angle, and the inner angle is dentiform and usually very prominent. The antennules fold transversely.

The basal antenna-joint is peculiarly short and has its anteroexternal angle produced to form a lobule or spine extending into the orbit : the flagellam, which is of fair length, stands in the orbital hiatus.

Epistome short or even linear, sometimes prolonged in the middle line to form a spine lying below the inter-antennalary septam. Buccal cavern squarish, broader than long, the efferent branchial channels almost always very well defined.

Chelipeds longer, usually much longer, than any of the legs, and massive : arm with spines, both inner and outer angles of wrist spiniform, palm prismatic costate and usually with spines, fingers asually nearly as long as the palm and strongly toothed.

Legs compressed: in the last pair the merns and carpus are short and broad, and the propodite and dactylus are typically foliaceous and paddle-like for swimming.

The abdomen of the male is five-jointed, the 3rd-5th terga being fused : the lst tergum in both sexes is almost entirely concealed beneath the carapace.

The Indian species of the genas Neptunus fall into five groups, or subgenera, which are characterized as follows:-
I. Carapace very broad, little conver, and having the janction of the posterior with the postero-lateral angles rounded. Front not projecting beyond, or even receding behind, the internal supra-orbital angles : the last spine of the antero-lateral borders enormously larger than any of the others. Orbits of moderate sise and having only a slight doreal inclination. Antero-external angle of basal antenna-joint produced to a apiniform process lying in the orbit. Epistome produced in the middle line to form a very prominent spine : the anteroexternal angle of the meras of the external maxillipeds rounded. not produced laterally. Hand at least as massive as the arm.

Neptunus.
II. Carapece moderately broad, little convex, and having the postero-lateral junotions rounded. Front hardly projeoting beyond the internal sapra-orbital angles, bat not reoeding : the last spine of the antero-lateral borders a good deal the largest. Orbits large, with a very strong dorsal inclination. Antero-external angle of basal antenna-joint forming a blant lobe-like process. Epistome slightly produced in a spiniform manner : the antero-external angle of the meras of the external maxillipeds strongly produced in a lateral direction. Hand at least as massive as arm

Amphitrite.
III. Carapaoe suborbicular or not very broad, flat, the postero-lateral junctions rounded. Front slightly projeoting beyond the internal sapra-orbital angles : the last spine of the antero-lateral border either hardly larger or aotually amaller than any of the others. Orbits of moderate sise and with a moderate dorsal inclination. Antero-external angle of basal antenna-joint forming a lobe-like process. Epistome hardly produced in the middle line : antero-external angle of merus of external maxillipeds strongly produced in a lateral direotion. Hand hardly less massive than the arm

Acrelous.
1V. Carapace moderately broad, flat or little convex, and having the postero-lateral junctions angular or actually spiniform. Front decidedly prominent beyoud the inner supra-orbital angles : the last spine of the anterolateral borders very mach the largest. No free prolongation of the epistome in the middle line. Hand abont as massive as arm. [Froept in N. spinipes, the angle of the basal antenna-joint is a lobe-like process. Except in N. tuberculosus and brockii, the orbits are large with a very strong dorsal inclination. Except in N. hastatoides, the antero-external angle of the
merns of the external maxillipeds is not produced in a lateral direotion]
V. Carapace moderately broad, distinotly convex, rounded postero-laterally. Front projecting beyond the inner supra-orbital angles: the last spine of the anterolateral borders slightly the largest. Orbite large, with strong dorsal inclination. Basal antenna-joint longitudinally grooved on ventral surface. No free prolongation of the epistome in the middle line: no lateral expansion of the autaro-extarnal angle of the merus of the external maxillipede. Hand mach slenderer than the arm

Lupocyclopords.

Key to the Indian species of the genus Neptunus.

1. Hand either more, or bat little less, massive than arm :-
A. Last spine of antero-lateral border much the largeat:-
2. Postarior angles of carapace rounded (NepTU-nus):-
i. Antero-external angle of merus of external maxillipeds rounded :-
a. No spine on the posterior border of the arm
N. sanguinolentus.
b. A spine at far end of posterior border of arm
N. pelagicus.
ii. Antero-external angle of merus of external maxillipeds strongly produced in a lateral direction (Ampitrite) :-
a. No spot on dactylus of last pair of legs.
b. A apot on dactylus of last pair of legs : crests of hands and abdomen with a pearly sheen
N. gladiator.
N. argentatus.
c. Spine at inner angle of wrist twothirds as long as palm
3. Posterior angles of carapace square or spiniform (Hellenus) :-
i. Posterior angles equare : front ont into 3 teeth \qquad N. tenuipes.'
ii. Posterior angle apiniform : front out into 4 teeth :-
a. Two distinct spines on posterior border of arm :-
x. After half of distal border of merus of last pair of legs finely serralate
N. hastatoides.
B. After half of distal border of meras of last pair of legs smooth
Ф. A spine near far end of
posterior border of merus of
last pair of legs N. spinipes.
b. A single true spine on posterior border of arm :-
π. Middle teeth of front very much smaller and less prominent than the outer : three spines on hand \qquad N. longispinosus.
4. Middle teeth of front nearly as large as, and more prominent than, the outer : two spines on hand
N. tuberculosus.
ϕ. Teeth of front obsolescent: no spines on hand \qquad N. brockii.
B. Last spine of antero-lateral border either hardly larger or even smaller than any of the others (Achelous):-
5. Carapace granular, last spine of antero-lateral border slightly the largest
N. granulatus.
6. Carapace polished, last spine of antero-lateral border alightly smaller than the others \qquad N. orbicularis.
II. Hand slender, much less maseive than arm (Lupocrcloporve) :
7. Front cut into four teeth of nearly equal aize, of which the middle two are the moot prominent
N. whitei.
8. Front cut into four lobee, of which the middle two are much the amaller and are hardly more prominent than the others
N. gracilimanus.

Dr. J. R. Henderson includes Neptunus sieboldi, A. Milne Rdwards (Archiv. du Mus. X. 1861, pp. 323, 339, pl. xxxv. fig. 5), whioh according to de Man is identical with N. convesus De Haan, in the Indian Frana. It appears to belong to the subgenus Neptunus, and is distingaished by the uniformity of sise and shape of the frontal teeth, by the small size of the last spine of the antero-lateral border, and by the absence of any spine on the posterior border of the arm.
11. Neptunus sanguinolentus, (Herbst).

Cancer pelagicus, (part), Fabricins, Mant. Ins. I. p. 318, and Ent. Syst. II. 447.
Oancer sanguinolentus, Herbst, Krabben, I. ii. 161, pl. viii. figs. 56, 57.
Portunus sanguinolentus, Fabricius, Kint. Syst. Suppl. p. 367 : Bosc, Hiat. Nat. Crust. I. p. 220 : Latreille, Encyo. Meth. X. p. 190.

Lupa sanguinolenta, Desmarest, Dict. Soi. Nat. XXVIII. p. 224, and Consid. Gen. Orusto p. 99 : Milne Edwards, Hist. Nat. Orust. I. 451 and in Cuvier Rogne An. pl. x. fig. 1: Lucas Hist. Nat. Anim. Art. Crast. p. 101 : Dana, U. S. Expl. Exp. Crust. pt. I. p. 271 : Stimpson, Proc. Ac. Nat. Soi. Philad. 1858, p. 38: Tozzetti, "Magenta" Orust. p. 68.

Neptunus sanguinolentus, De Hean, Faun. Japon. Orast. p. 38 : A. Milne Edwards, Archiv. du Mus. X. 1858-1861, pp. 319, 339, and in Maillard's l'ile Rénnion,

Annexe F. p. 2 : Heller, "Novara" Crust. p. 26 : Brocchi, Ann. 8oi. Nat. (6) I1. 1875. Art 2, p. 55, pl. xvi. figs. 83, 84 (male appendages) : Miers, Cat. New Zealand Crast. p. 28; and Ann. Mag. Nat. Hist. (5) V. 1880, p. 288, and Challenger Brachyura, p. 174 : Streets, Bull. U. 8. Nat. Mus. VII. 1877, p. 106 : Haswell, Cat. Austral. Crust., p. 77 : Filhol, Crust. Nouv. Zél., Miss de l'ile Campbell, p. 382, F. Maller, Verb. Naturf, Ges. Basel, VIII. 1886, p. 475 : de Man, Archiv. f. Naturges. LIII. i. 1887, p. 328, and in Weber's Zool. Frgebn. Niederl. Ost-Ind. II. 1892, p. 285 and Zool. Jahrb., Syst. etc., VIII. 1894-05, p. 556 : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 212 : Pfeffer, Xitt. Nathist Mas. Hambarg VII. 1889 (1890), No. 8, p. 6 (female dimorphism): J. R. Henderson, Tr. Linn. Soo. Zool. (2) V. 1893, p. 388 : Ortmann, Zool. Jahrb., Syst. eto., VII. 1893, p. 75, and in Semon's Forsohanger. (Jena. Denk VIIl) Orust. p. 45.

Carapace very broad, little convex, its length in the middle line half its breadth excluding the great lateral spines, finely granular everywhere in the young bat only in the anterior half in the adult, crossed transversely by some slightly-raised granular lines-two on the gastric, one on either branchial region - conspicuously marked posteriorly by three large blood-red spots.

Front cut into four sharp and very distinct teeth-not counting the inner supra-orbital angles - of which the middle two are the less prominent and have projecting between and far beyond them the spine-like process of the epistome. Supra-orbital borders out by 2 fissures iuto 3 lobes, the angles of the middle lobe not conspicnous.

Antero-lateral borders very long and oblique, cut into 9 teeth including the outer orbital angle) the last of which is about four times as long as any of the others The posterior border, which is smooth, forms a common curve with the postero-lateral borders.

Antero-exterual augle of merus of external maxillipeds not produced.

Chelipeds in the adult male about $2 \frac{8}{8}$ times the length of the carapace, but rather less in the female and young male: the hand is the most massive segment. Arm with 3 or 4 large spines on the anterior (inner) border, bat without any on the posterior border. Hand and outer surface of wrist costate, the costm smooth : both inner and outer angle of wrist strongly spiniform : the palm, which is not, or only slightly, longer than the fingers has two spines dorsally, one being in front of the apex of the wrist-joint, the other just behind the fingerjoint.

Legs smooth: a spinule near the far end of the posterior border of the carpus of the first two pairs.

A large species.
In the Indian Museum are 60 specimens, from Penang, Nicobars, east and west coasts of the Peninsula, Ceylon, and Karáchi.
J. 1I. 5

12. Neptunzus pelagicus, Linn.

Pagurus reidjungan, Ramph, Amboinsoh. Rariteitk. I. p. 11 (which also seoms to inolude N. sanguinolentus), pl. vii. fig. R.

Oancer pelagicus, Linnæas, Mas. Lud. Ulr. p. 484, and Syst. Nat. (xii. ed.) p. 1042 : Forskal, Deeor. Anim. p. 89 : Fabrioius, Fnt. Syat. II. p. 447 (part).

Oancer cedo-nulli, Herbst, Krabben, II. ii. 157, pl. xaxix.
Cancer reticulatus, Herbet, Krabben, III. i. 65, pl. 2.
Portumus pelagicus, Fabriciue, Ent. Syst. Sappl. p. 807 : Latreille, Hist. Nat. Crust. VI. 16, and Encyol. Meth. X. p. 188 : Savigny, Descr. Rigypt. pl. iii. fig. 8 (Aadonin, Fixpl. p. 83).

Portunus cedo-nulli, Bose, Bist. Nat. Crust. I. p. 221.
Iupa polagica, Desmarest, Dict. Sci. Nat. XXVIII. p. 223 and Consid. Gen. Orust. p. 98, pl. vi. fig. 2: Milne Fivarde, Hist. Nat. Orust. I. 450 : Lucas, Hist. Nat. Anim. Art. Orust. p. 101, pl. vii. fig. 2 : Dana, U. 8. Expl. Exp. Crust. pt. I. p. 271 : Stimpson, Proc. Load. Nat. Sci. Philad. 1858, p. 38: Heller, SB. AK. Wien, XLIII. 1801, p. 855 : Hilgendorf in v. d. Decken's Reisen Oat-Afr. III. i. p. 77 : Tozretti, ' Magenta' Orust. p. 66, pl. v. fig. 3a-b.

Neptunus pelagicus, DeHaan, Faun. Jap. Crust. p. 87, pl. ix, x : Kranes, Sudefr. Cruat. p. 23 : A. Milne Fidwards, Arohiv. du Mus. X. 1861, pp. 320, 829, and Nouv. Arohiv. du Mas. IV. 1868, p. 70, and IX. 1878, p. 156: Heller, Novara Crust. p. 27 : Hess, Archiv. f. Natarges. XXXI. 1865, i. pp. 138, 172 : Brocohi, Ann. Sci. Nat. (6) II. 1875, Art. 2, p. 68, pl. xv. fig. 74,75 (male appendages): Miers, Cat. New Zealand Orast. p. 25, and Ann. Mag. Nat. Hist. (4) XVII. 1876, p. 221, and (b) V. 1880, p. 238, and Zool. H.M.8. Alert, pp. 188, 289, and Challonger Brachyara, p. 178 : Kosemann, Reise roth Meer. Crust. p. 46 : Neumann, Cat. Cruat. Heidelb. Mus. p. 24 : Hilgendorf, MB. AK. Berl. p. 799 : Nanck, Zeite. Wis. Zool. XXXIV. 1880, p. 68 (gastric teeth) : de Man, Notes Leyden Mus. II. 1880, p. 183, and Archiv. f. Natarges. LIII. 1887, i. p. 328, and Journ. Linn. Soc., Zool., XXII. 1888, p. 69, and in Weber's Zool. Ergebn. Niederl. Ost.Ind. II. 1892, p. 284: Hawwell, Cat. Austral. Crust. p. 77 : Filhol, Crust. Nouv. Zél. p. 881 : ,Cano, Boll. Soc. Nat. Napoli, III. 1889, p. 212 : Pfeffer, Mitteil. Nat. Hist. Mus. Hamb. X1I. 1889, No. 8, p. 6: A. O. Walker, Journ. Linn. Soc., Zool., XX. 1890, p. 110 : J. R. Henderson, Trang. Lins. Soo. Zool., (2) V. 1898, p. 367 : Ortmann, Zool. Jahrb., Syat., VIL. 1898, p. 74, and in Semon's Forechangar. (Jena. Denk. VIII.) Orust . p. 45.

P Neptunus armatus, A. Milne Edwarde, Arohiv. du Mus. X. 1861, pp. 828, 839, pl. xxxiii. fig. 2: Miers, Zool. H. M. B. Alert, pp. 188, 229 : Oano, Boll. Soo. Nat. Napol. III. 1889, p. 212: J. B. Henderson, Trans. Linn. 80a, Zool., (2) V. 1893, p. 870: Ortmann, Zool. Jahrb. Syat. VIl. 1888-04, p. 75.

Neptunus trituberculatus, Miers, Ann. Mag. Nat. Hiabt., (4) XVII. 1876, p. 281 and (5) V. 1880, p. 238, and Cat. Cruat. New Zoaland, 1876, p. 25, and Challenger Brachyura, p. 172 : Ortmann, Zool. Jahrb. Syat. VII. 1898, p. 74.

Carapace broad, little convex, its length a little more than half its breadth without the great lateral spines, at all ages closely covered with largish miliary granules: two transverse lines on the gastric, one on either branchial region : sometimes two lumps on the cardiac and one on the post-gastric region, these being very variable in size and distinctness.

Front cat into four teeth-not counting the inner angles of the orbit-of which the middle two are small and little prominent, or obsolescent, or even confluent and obsolete: between and far beyond them projects the spine-like process of the epistome. Supra-orbital borders cut by two fissures into three lobes, the outer angle of the middle lobe being usually dentiform.

Antero-lateral and posterior borders and external maxillipeds almost as in the preceding species.

Chelipeds in the adult male more than 3 times, in the female and young male not quite $2 \frac{1}{1}$ times the length of the carapace-the hand the most massive segment. Arm with 3 large spines on the anterior (inner) border and with 1 at the far ond of the posterior border. Wrist and hand much as in the preceding species, bat the coste are, for the most part, granular, and the hand carries 3 spines two of which stand side by side behind the finger-joint.

Legs as in N. sanguinolontus.
Colonrs in spirit yellowish, the oarapace chelipeds and proximal joints of the last pair of legs having the dorsal surface copiously and coarsely reticulated with bluish and parplish green.

A large species.
In the Indian Masenm are 46 specimens from all parts of the coasts of the Indian Seas, from Penang to the Persian Gulf, besides 13 from Japan, Hongkong, Australia and Suez.

13. Neptunus (Amphitrite) gladiator (Fabr.).

Portunus gladiator, Fabricias, Rat. Syst. Sappl. p. 868 : Boec, Hint. Nat. Craat. I. p. 219 : Letreille, Hist. Nat. Crast. VI. p. 19, and Fnoyol. Meth. X. p. 189.

Oancer menestho, Herbat, Krabben, III. iii. 34, pl. Iv. fig. 8.
Lupea gladiator, Milne Edwards, Hist. Nat. Orust. I. 456.
Amphitrite gladiator, De Haan, Faun. Jap. Orust. p. 89, pl. i. fig. 5 : Haswell, Cat. Austral. Oruat. p. 84.

Neptunus gladiator, A. Milne Edwards, Archiv. du Mus. X. 1861, pp. 380, 889 : Riahters in Mobius Meeresf. Manrit. p. 152 : Maller Verh. Nat. Ges. Basol, VIII. 1886, p. 475: Miers, Challenger Brachyura, p. 177 : de Man, Journ. Linn. Soo., Zool., XXII. 1888, p. 69 : J. B. Henderson, Trans. Linn. Soc., Zool., (2) V. 1898, p. 887 : Ortmann, Zool. Jahrb. Syst. VII. 1893-94, p. 78.

Amphitrits Haanii, Stimpeon, Proo. Ac. Nat. Sci. Philad. 1858, p. 38.
P Amphitrite media, Stimpson, Proc. Ac. Nat. Soi. Philad. 1858, p. 39 (v. A. Milne Rdwarde, Arohiv. du Mus. X. 1861, pp. 331, 839 and Ortmann, Zool. Jahrb. Syot. V1I. 1893.94, p 73).

Carapace depressed, finely subtomentose, its length about twothirds its breadth without the great lateral spines, its surface broken by low symmetrically disposed sub-regional elevations the summits alone of which are granular.

Front cat into four acate teeth (not counting the inner supraorbital angles) of which the middle two are the smaller and less prominent and have projecting between them the dentiform process of the epistome. Supra-orbital margin cut by two fiesures into three lobes, the outer angle of the middle lobe strongly dentiform.

Antero-lateral and posterior borders much as in the preceding species except that the great lateral spines are only about $2 \frac{1}{8}$ times the length of any of the others.

Eyes large, reniform, not concealed to dorsal view by the orbits, which are large and almost entirely dorsal in position.

Antero-external angle of merns of external maxillipeds very strongly produced in a lateral direction.

Chelipeds in the adult male a little over $2 \frac{1}{2}$ times the length of the carapace, somewhat shorter in the female-the hand the most massive segment: granalar in places, the granules on the upper surface of the arm and under surface of the hand forming sub-squamiform lines. Arm with 4 spines on the anterior (inner) border and 2 near the far end of the posterior border. Wrist and hand costate, the coster granular. Both inner and outer angle of wrist strongly spiniform, the former very strongly so. Two spines on the hand, one being just in front of the apex of the wrist-joint, the other being a short distance behind the finger-joint: the carina that forms the outer boundary of the lower surface of the hand is very salient.

Legs, like the arm, tomentose in places, but very strongly so along the anterior (inner) border : no spinule on the posterior border of the carpopodites.

The abdomen in the male has remarkably sinuous lateral borders: the 2nd and 3rd abdominal terga in both sexes are very strongly carinated.

Colours in spirit yellow, often with some red markings on edges of carapace and on fingers and on spines of chelipeds.

A species of medium size, adult males having the carapace about 33 millim. long and about 65 millim. broad inclading the great ateral spines.

In the Indian Museum are 13 specimens from Ceylon, Madras, Sunderbunds, and Mergui.
14. Neptunus (Amphitrite) argentatus (White) A. M. Edw.

[^1]Very like N. gladiator bat easily distingaished by the following characters :-
(1) the carapace is longer and narrower, its length being threefourths its breadth without the great lateral spines; and its subregional convexities are in much stronger relief and much better defined:
(2) the median frontal teeth are smaller and less prominent, and the outer angle of the middle lobe of the supra-orbital margin is less acate:
(3) the crests of the outer surface of the palm and immohile finger and of the third abdominal segment are not only more salient and trenchant, bat also have a curious silvery or coppery pearly sheen:
(4) the chelipeds are shorter; and there is a dark round spot near the tip of the dactylus of the last pair of legs.

It is a very mach smaller species; only one of numerous egg-laden females in the Indian Musenm has the carapace more than 20 millim. long and 30 millim. broad (including spines). Specimens of N. gladiator of this size are obviously immature.

In the Indian Maseam are 63 specimens from the Andamans, Mergai (Marine Survey), Arakan coast, Ganjam coast, Ceylon, and Malabar coast. Nearly half the specimens are recorded from depths of 18 to 33 fathoms.

15. Neptunus (Amphitrite) argentatus var. glareosus.

In this variety the carapace is even narrower and more elongate, its subregional convexities are hardly less salient and well defined than those of N. tuberoulosus, and its surface is almost free of tomentum. The carina of the 3 rd abdominal tergom is about twice as prominent as it is in the typical form, baving the shape of a prominent foliaceons lobe. The dorsal surface of the body and chelipeds is profasely speckled.

26 specimens, including egg-laden fermales, were dredged from a bottom of sand and stones off the Andamans at 55 fathoms.

16. Neptunus (Amphitrite) petreus, n. sp.

This species differs from N. gladiator, and approaches N. spinicarpus Stimpson, in the enormons development of the spine at the iuner angle of the wrist.

It will be sufficient to point out the characters that distingaish it from N. gladiator, of which it may prove to be only a variety.

The length of the carapace is nearly $\frac{3}{4}$ the breadth without the lateral spines. The frontal teeth are blunt and the epistome is not
produced. The last spine of the antero-lateral border is hardly twice the length of any of the others. The costm of the wrist and hand are low, and the spine at the inner angle of the wrist is about two-thirds the length of the palm.

A single male specimen from the Pedro Shoal north of the Laccadive Islands. The carapace is 12 millim. long and 18 millim. broad including the spines.
17. Neptunus (Hellenus) hastatoides (Fabr.) A. M. Edw.

Portumus hastatoides, Fabricius, Ent. Syat. Sappl. p. 368.
Cancer hastatus, Herbst, Krabben, III. iii. 8, pl. lv. fig. 1.
Amphitrite hastatoides, De Haan, Faun. Jap. Crust. p. 39, pl. i. fig. 8 : Stimpeon, Proc. Ao. Nat. Sci. Philad. 1858, p. 88.

Neptunus hastatoides, A. Milne Edwarde, Archiv. da Mus. X. 1861, pp. 838, 388 : Miers, Zool. H. M. 8. Alert, pp. 183, 829, and Challenger Braohyara, p. 175 : J. R. Henderson, Trans. Linn. Soo., Zool., (8) V. 1893, p. 368: Ortmann, Zool. Jahrb., Syst., VII. 1898-94, p. 74: de Man, Zool. Jahrb., Syst., VIII. 1894-95, p. 657.

Carapace very flat, its length in the middle line is about two-thirds its breadth not counting the great lateral spines, finely subtomentose, its surface symmetrically broken up into low sabregional convexities the summits alone of which are granular.

Front slightly prominent beyond the inner supra-orbital angles and cut into four teeth, the middle two of which are very much narrower and acuter than, and are usually as prominent as or even more prominent than, the others : the inconspicuons apical prolongation of the epistome can be seen between, but does not project beyond, the middle teeth. Supra-orbital border cut by two fissures into three lobes, the outer angle of the middle lobe being dentiform.

Antero-lateral borders of moderate length and obliquity, cut into 9 teeth (including the outer angle of the orbit) the last of which is less than three times the length of any of the others in adults, but is longer in the young. The finely-beaded posterior border is practically straight, and forms a sharp or claw-like angle of junction with the postero-lateral borders.

Eyes large and reniform, not concealed by the entirely-dorsal orbits. The antero-lateral angle of the merus of the exterual maxillipeds is acutely produced in a lateral direction.

Chelipeds in the adult male slightly more than twice the length of the carapace, finely subtomentose, the hands little if at all less massive than the arm. . 3 or 4 spines on the anterior (inner) border of the arm, 2 near the far end of the posterior border : hand and upper surface of wrist costate, the coster granular : inner and outer angles of wrist strongly spiniform : two spines on the hand, one being in front of the apez of the wrist-joint the other just behind the finger-joint.

Legs more or less subtomentose, quite unarmed, but the after half of the distal border of the merus of the last pair is finely werrubtede.

The 3 rd segment of the abdomen of both sexes is strongly and sharply carinate : the length of the 6th segment of the male is nearly twice its greatest breadth.

Colours of good fresh spirit specimens, greenish yellow more or less mottled : tip of dactylus of last pair of legs blackish brown.

A small species: egg-laden females have the carapace 22 millim. long and 42 millim. broad including spines.

In the Indian Masenm are 137 specimens from the Madras coast, Andamans, G. of Martaban, Penang, and Persian Gulf, besides 6 from Hongkong.

18. Neptunus (Hellenus) andersoni, de Man.

Neptumus andersoni, de Man, Journ. Linn. Soc., Zool., XXII. 1888, p. 70, pl. iv• figs. 3, 4 : J. B. Henderson, Traus. Linn. Soc., Zool., (8) V. 1893, p. 368.

This species differs from N. hastatoides in the following charsc-ters:-

The carapace is more convex, the subregional elevations, instead of being low and ill-defined, are sharply-defined tubercles, and the oblique ridge that traverses either epibranchial region is particularly salient. The front is more prominent beyond the inner supra-orbital angles and the two middle teeth are less prominent than the others. The posterior angles of the carapace are much less acute. The anteroexternal angle of the merus of the external maxillipeds is less produced in a lateral direction. The chelipeds are shorter, being less than twice the length of the carapace in the male, and the costm of the wrist and hand are smooth. The 6th segment of the male abdomen is less elongate than in N. hastatoides.

The colour of good fresh spirit specimens is biscuit yellow without any mottling or marking.

In the Indian Musenm are 4 specimens from the Persian Galf.

19. Neptunus (Hellenus) spinipes, Miers.

Neptunus spinipes, Miers, Challenger Braobyura, p. 178, pl. xv. fig. 1.
This species has a strong superficial resemblance to N. hastatoides, but is easily distinguished (1) by the more convex carapace (2) by the non-fissured supraporbital border (3) by the form of the merus of the external maxillipeds which has its antero-external angle rounded not produced laterally (4) by the spine on the posterior border of the merus of the last pair of legs, and (5) by the position of the anterior apine of the band, which is placed a good way back instead of immediately behind the finger-joint.

Carapace appreciably convex, but shaped and scalptured as in N. hastatoides. Front very distinctly prominent beyond the inner sapra-orbital angles and beyond the epistome, cat into four teeth of which the middle two are somewhat smaller narrower and less prominent than the others.

The supra-orbital border is not fissured, but the orbits otherwise, and the eyes, are as in N. hastatoides.

Antero-lateral border cat into 9 teeth (including the outer orbital angle) of which the first 2 or 3 are very small and inconspicuons and the next 5 or 6 small, the last being a spike usually from a third to half the breadth of the carapace proper in length. The posterior border is straight and forms an acutely dentiform angle of junction with the postero-lateral borders.

The merus of the external maxillipeds is narrow and has its anteroexternal angle simply rounded, not produced laterally.

The chelipeds in the adult male are rather more than $2 \frac{1}{3}$ times the length of the carapace, but are otherwise similar to those of N. hastatoides, except that the second spine of the hand is placed a good way behind the finger-joint.

There is a spine near the far end of the posterior border of the merus of the last pair of legs.

The 2nd and 3rd abdominal terga in both sexes are transversely carinate, the carinm being of no great depth bat very elegantly denticulate. The length of the 6th tergam of the male is not much more than its greatest breadth.

A small species: egg-laden females are 6.5 millim. long and 16 millim. broad including spines, bat males are nearly twice this size.
'In the Indian Museum are 66 specimens, from the Madras coast, Andamans, G. of Martaban, Arakan coast, and Muscat. Most of them come from over 20 fathoms.

The specimen figured by Miers has abnormally short lateral epibranchial spines.
20. Neptunus (Hellenus) longiopinosus (Dana).

Amphitrite longispinosa, Dana, Proc. Ac. Nat. Sci. Philad. 1852, p. 84, and U. 8. Kxpl. Exp. Crast. pt. I. p. 277, pl. xvii. fige. 2 a-c.

Neptunus longiepinosus, A. Milne Edwarde, Archiv. du Mus. X. 1861, pp. 387, 339.

Xiphonectes longiepinoeus, Miers, Challenger Brachyura, p. 188 : J. B. Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 370.

Amphitrite vigilans, Dana, Proc. Ac. Nat. Sci. Philad. 1852, p. 84, and U. s. Inxpl. Exp. Crast. pt. I. p. 278, pl. xvii. figs. 3 a-d.

Neptunus vigilans, A. Milne Edwards, Aroliv. du Mus. X. 1861, pp. 336, 339.
and in Maillard's l'ile Rénnion, Annexe F. p. 2: Richters in Mǒbiac, Meeresf. Maurit. p. 152 : var. obtusidentatus, thiars. Zool. H. M. 8. Alert, p. 638, pl. xlviii. fig. 1.

Xiphonectes leptocheles, A. Milne Fdwards, Nouv. Archiv. du Mus. IX. 1878, p. 159, pl.iv. fig. 1.

Carapace flattish, its length is from $\frac{3}{8}$ to $\frac{3}{4}$ its breadth without the spines, its surface is subtomentose and is cut up into well defined sub-regional elevations, the convezities of which are granular.

Front prominent beyond the bardly independent inner supraorbital angles and beyond the epistome, cut into four usually acute, triangular teeth-the middle two small and receding, the outer ones very large and prominent. Supra-orbital margin cut by 2 fissures.

Antero-lateral borders moderately oblique, armed with a variable number of small and inconspicuous teeth, and ending in a lateral epibranchial spine that is about half the breadth of the carapace in length. The number of teeth, including the outer orbital angle and the lateral spine, varies from 6 in the young to 9 in the adult, though there are adults with less than 9.

The posterior border is nearly straight and makes a dentiform or sub-dentiform angle of junction with the postero-lateral borders.

Orbits dorsal not concealing the large reniform eyes. Anteroexternal angle of merns of external maxillipeds not produced in a lateral direction.

Chelipeds of male about $2 \frac{1}{2}$ times the length of the carapace, granular, the granules being in places sub-squamiform, the hand as a whole not less massive than the arm : 3 or 4 spines on the anterior (inner) border of the arm and one at the far end of the posterior border: inner and outer angles of wrist spiniform : hand and fingers costate, the costm granular, there are 3 spines on the hand, one being in front of the apex of the wrist-joint, the other two standing side by side (the inner the larger) in the distal half of the upper surface.

First three pair of legs slender.
2nd and 3rd abdominal terga transversely carinate, the carinm not being very prominent : the sides of the male abdomen sinuous.

A small species: egg-laden females have the carapace 9 millim. long and 20 millim. broad including the spines, but many males are a good deal larger, and, on the other hand, egg-laden females are occasionally much smaller.

Colours of good fresh spirit specimens yellow, with mach brown and green mottling on dorsal surface of carapace, chelipeds and legs.

In the Indian Museum are 81 specimens from the Andamans, Maldives, and Persian Galf, besides 2 from Marritius.
J. II. 6

For a long time I thought I could recognise three distinot species differing from one another (1) in relative length of carapace, (2) in relative length and in sculpture of chelipeds, especially of the hands, and (3) in the degree of prominence of the inner supra-orbital angle. But after a careful examination of 83 specimens I find that all these differences are inconstant, as Miers has already said.

21. Neptunus (Hellenwe) tenuipes, De Haan.

Amphitrite tenwipes, De Haan, Fann. Japon. Cruatr p. 89, pl. i. fig. 4: Haswoll, Oat. Austral. Orust. p. 88.

Noptumus tomuipes, A. Milne Fdwards, Archiv. du Mas. X. 1861, pp. 885, 889 : Thallwits, Abh. Zool. Mus. Dresden, 1890-91, No. 8. p. 48: Ortmann, Zool. Jahrb, Byat. VII. 1803, p. 74.

Carapace little convex, its length about $\frac{3}{8}$ its breadth without the spines, its sarface sufficiently tomentose to appear almost smooth, but when denaded it is found to be cat ap into well defined sub-regional elevations the convexities alone of which are granular.

Front prominent beyond the inner sapra-orbital angles and beyond the epistome, cat into three blantly triangular teeth, of which the middle one is slightly the smaller and less prominent. Supra-orbital border cat by two-fissures.

Antero-lateral border cat into 9 close-set teeth (including the outer orbital angle) of which the last is about three times as long as any of the others. The posterior border is elightly carved and meets the postero-lateral borders at a well-marked angle, which is sometimes slightly tarned up.

Eyes large, reniform, not concealed by the almost completely dorsal orbits. Outer angle of merus of external maxillipeds not produced laterally.

Chelipeds in the adult male aboat $2 \frac{1}{4}$ times the length of the carapace, the hand being the most massive segment. Arm with 3 spines on the anterior (inner) border and 1 at the far end of the outer border: both inner and outer angle of wrist spiniform, the inner most conspicuously so. Hand costate, the costem serrulate ; armed with 2 spines, one being in front of the apex of the wrist-joint, the other slightly behind the finger-joint.

First 3 pair of legs slender, the first pair hardly shortor than the chelipeds.

Abdomen of male sinuons.
In the Indian Museam are 14 specimens from the Andamans.
22. Neptunus (Hellonus) tuberculosus, A. M. Edw.

Neptunus tuberewlosus, A. Milne Edwards, Arohiv. du Mun. X. 186I, pp. 383, 8s9,
jph scri. ag. 5 : Miara, Challenger Braohyura, p. 176 : J. R. Hendormon, Trana. Linn. Soo, Zool., (2) V. 1893, p. 869.

Carapace flat, its length in the middle line between $\frac{7}{2}$ and $\frac{1}{4}$ its lreadth without the great latersl spines, its surface rough, granular, and symmetrically puckered or tubercled.

Front prominent beyond the inner supra-orbital angles and beyond the epistome, cut into four bluntly triangular teeth of nearly equal size, of which the middle two are the more prominent. Sapra-orbital margin cut by two fissures.

Antero-lateral borders rather long, moderately oblique, cut into 9 teeth (including the outer orbital angle) the last of which is about 3 times longer than any of the others : the teeth are often rather irregnlar. Posterior border nearly straight and forming a dentiform angle of junction with the postaro-lateral borders.

The orbits are not completely dorsal. The merus of the external mazillipeds is elongate, but has not the antero-external angle produced laterally.

Chelipeds of the male a little over twice the length of the carapace, granular, the hand the most massive joint. 3, occasionally 4 , teeth on the anterior (inner) border of the arm, and 1 at the far end of the posterior border. Hand and upper surface of wrist costate, the coste granular: both inner and outer angle of wrist spiniform : two apinules, which are often blunt and inconspicuous, on the hand in the usual position : fingers a good deal shorter than the palm.

Legs unarmed : sternum granular.
A small species; ovigerous females have the carapace 11 millim. long and 21 millim. broad including spines.

Colours of good fresh spirit specimens yellow, profusely mottled and speckled with brown green and parple.

In the Indian Maseum are 43 specimens from the Andamans, off Ceylon 28 fathoms, and the Persian Gulf.

23. Nepturve (Hellenus) Brockaii, de Man.

Neptumas brochiit do Man, Arohiv. f. Naturgen. LIII. 1887, i. p. 828, pl. xiii. 48.4.

Closely resembles N. tubercuiosus, bat is distinguished by the following characters, specimens of the same size and sex being com-pared:-
(1) the front is not cut into teeth, but forms a simple lamina that projects slightly beyond the inner supra-orbital angles;
(2) the surface of the carapace is cut up into low granular subregional elevations, but the taberoles characteristic of N. tuberculosus are absent :
(3) there are no spines on the hand. [But there are specimens of N. tuberculosus in which the spines of the hand are blunt and inconspicaons].

In the Indian Museum are two males from the Andamans. After comparing these with 43 specimens, of both sexes and all sives, of N. tuberculosus I think they should be kept distinct.

24. Neptunus (Lupocycloporus) Whitei.

Achelous Whitei, A. Milne Edwards, Archiv. u Mus. X. 1861, pp. 348, 347, pl xxxi. fig. 6: A. O. Walker, Journ. Linn. Soc., Zool., XX. 1886-00, p. 110: J. R. Henderson, Trans. Linn. 8oo., Zool., (2) V. 1893, p. 871.

Neptunus Whitoi, Miers, Challenger Brachyara, p. 171.
Carapace fairly convex, its length about $\frac{2}{8}$ its breadth without the spines, its surface finely pilose, but not sufficiently so to conceal a characteristic series of transverse finely-beaded ridges, of which there are 3 on the gastric, 3 on either branchial region, and one on the cardiac.

The front, which is prominent beyond the bluntly dentiform inner supra-orbital angles and beyond the epistome, is cut into four very definite teeth of nearly equal size, of which the middle two are slightly the more prominent. Supra-orbital border cut by two fissures.

Antero-lateral borders moderately oblique, cuit into nine regular teeth (including the outer orbital angle) of which the last is barely twice the length of the others in the adult, though in the young it is a good deal longer. Posterior border finely beaded, and forming a common curve with the postero-lateral borders.

Orbits large, almost entirely dorsal in position, not concealing the large reniform eyes from dorsal view.

Chelipeds nearly 3 times the length of the carapace in the adult male, more or less covered with squamiform granules, the wrist and hand much slenderer than the arm. It to 6 spines on the anterior border of the arm ; 2 on the posterior border, one being terminal the other submedian. Hand and npper surface of wrist costate, the coster granular : both inner and outer angle of wrist spiniform : at least 3 spines on the hand, one being in front of the aper of the wrist-joint and two side by side some distance behind the finger-joint. Fingers slender, compressed, ending in long needle-like points, the tips being slightly bat very characteristically bent outwards; otherwise the dactylus is nearly straight and the immobile finger gently upcurved.

Legs, like the chelipeds, more or less pabescent: there is a spine near the far end of the posterior border of the merus of the last pair.

Abdomen of male pointed: in both sezes the 2nd and 3rd abdominal terga are transversely, but not very strongly, carinate.

The largest specimen (male) in the Indian Museum has the carapace 24 millim. long and 44 millim. broad including the spines, but there are numerons egg-laden females that are much smaller than this.

In the Indian Museam are 33 specimens, from the Madras coast and the Andamans, besides one of the Challenger daplicates from NewGuinea.
25. ? Neptunus (Lupocycloporus) gracilimanus, (Stimpson).
? Amphitrite gracilimanus, Stimpson, Proc. Acad. Nat. Sci. Philad. 1858, p. 38.
? Neptunus gracilimanus, A. Milne Edwards, Archiv. du Mns, X. 1861, pp. 336, 339.

This species, if my identification be correct, though mach like N. whitei, is easily distinguished by the following difference:-
(1) the transverse beaded ridges of the carapace are much less distinct and are less numerons : they are six in number, the anterior gastric one being absent : the carapace also is decidedly more convex :
(2) the shape of the front is entirely different, for instead of being cut into four subacute teeth of nearly equal size, it is out into four lobes of which the outer ones are broad and shallow while the middle two are narrow and dentiform : the inner sapra-orbital angles also are much blanter :
(3) the last spine of the antero-lateral border is always in adults more than twice the length of any of the others:
(4) both the spines on the posterior border of the arm are near the far end of that border :
(5) the fingers are incurved, and the bending outwards at tip is inappreciable:
(6) it is a much smaller spocies : the largest egg-laden female has the carapace 11 millim. long and 21 millim. broad including the spines, and there are numerous egg-laden females mach smaller than this.

The differences are constant throughout the whole series of specimens of both sexes.

In the Indian Museum are 45 specimens from the Andamans, G. of Martaban, Arakan coast, and from the east coast of the Peninsala at 15-35 fms.

[^2]1868, p. 70 and IX. 1878, p, 161 : Streeta, Bull. U. S. Nat. Mus. VII. 1877. p. 109 : Miers, Phil. Trans. Boy. Soc. Vol. 168, 1879, p. 488, and Zool. H. M. S. Alert, pp. 250, 638 : Riohters in Möbins Meereof. Maurit. p. 152 : Maller, Verh. Nat. Geen Basel VIII. 1886, p. 475 : de Man, Arohiv. f. Naturgee. LIII. 1887, i. p. 831 : Cano. Boll. Soo. Nat. Napol. IIl. 1889, p. 214 : J. B. Henderson, Trang. Linn. Soc. Zool. (1) V. 1893, p. 871.

Neptunus (Achelous) gramulatus, Miers, Ohallenger Braohyara, p. 180: Thallwits, Abh. Zool. Mas. Dreeden, 1890-91, No. 8, p. 48: Ortmann, Zool. Jahrb. Syat. VII. 1893-94, p. 78, and in Semon's Zool. Forsohnnger. (Jena, Denk. VIII.) Oruat. p. 45 : de Man, Zool. Jahrb. Syat. VIII. $1894-95$ p. 558.

Carapace depressed, a little over threo-quarters as long as broad, finely subtomentose, its surface cut up into well-defined sub-regional elevations the convexities of which are granular.

Front slightly receding, slightly prominent beyond the blunt inner supra-orbital angles and beyond the epistome, cut into four lobes (not counting the inner supra-orbital angles) of which the middle two are the smaller and less prominent and are often almost coalescent. Supraorbital border with two distinct fissures.

Antero-lateral borders very slightly oblique, cut into 9 teeth (including the outer orbital angle) of which the last is but little bigger than any of the others which it quite resembles in shape. The posterior border forms a common curve with the postero-lateral borders.

Orbits not completely dorsal : eyes not very large. Antero-external argle of merus of extarnal maxillipeds considerably produced in a lateral direotion.

Chelipeds in the male about $2 \frac{1}{2}$ times the length of the carapace, more or less granular, the hand not or little less massive than the arm. Arm with 4 or 5 spines on the anterior border, and with 2 on the posterior border-one submedian the other subterminal: outer border of wrist subcarinate up to a terminal spinule, inner angle of wrist strongly spiniform : hand costate, with a blunt spinule in front of the apex of the wrist-joint and a sharp spine some distance behind the finger-joint.

First three pair of legs rather slender.
Third abdominal tergum in both sexes strongly and sharply carinate.

Colours of good fresh spirit specimens pale jellow, the dorsal surface of the carapace and chelipeds profusely mottled and speckled with grey and dark red.

A small species: egg-laden females have the carapace 12 millim. long and 15 millim. in total breadth, but adult males are half again as big.

In the Indian Museum are 140 specimens from the Andamans and Nicobars, Persian Gulf, Mergui, Ceylon, and Malabar coast, (besides 3 from Mauritins and 2 from Upola).
27. Neptuinus (Acholowe) orbicularis, Richters.

Achelous orbicularis, Richters in Möbius Meeresf. Maurit. p. 158, pl. xvi. figa. 14, 15: J. R. Henderson, Trans. Linn. Soc., Zool., (1) V. 1898, p. 871.

Differs from Neptunus (Achelous) granulatus in the following cha-racters:-
(1) the carapace is extremely thin and depressed, is perfectly smooth-except for faint marginal depressions-and bare, and is sabcircular in shape, its length being of its breadth :
(2) the outer fissure of the supra-orbital margin is obsolete, and the inner fissure is represented by a closed satare:
(3) the antero-lateral borders are cat into 9 teeth which gradually decrease in size from before backwards :
(4) the chelipeds in the male are about twice the length of the carapace, their surface is non-granular, and the posterior border of the arm is more expanded than in N. granulatus.

In the Indian Maseam are 6 specimens from the Pedro Shoal (Laccadives) and 2, including an egg-laden female, from the Andamans.

Chartbdig, De Hzan (Goniosoma, A. Milne Edwards).
Charybdis and Oceanus, De Haan, Fann. Japon. Crust. pp. 10, 9.
Goniosoma, A. Milne Edwarde, Ann. Sci. Nat., Zool., (4) XIV. 1860, p. 268, and Archiv. da Mus. X. 1861, p. 867 : Miers, Ohallengar Brachyura, p. 189.

Charybdis, M. J. Rathban, Proo. Biol. Soc. Washington, XI. 1897, p. 161.
Carapace heragonal, moderately broad, depressed or little convex, asually with transverse granular ridges at any rate in its anterior half.

Front proper (not including the inner sapra-orbital angles from which it is distinctly separated) usually between a fourth and a third the greatest breadth of the carapace, cut into six lobes or teeth (exclusive of the sapra-orbital angles).

Antero-lateral borders oblique, moderately arched, longer than the postero-lateral, cat into from 5 to 7-usually six-teeth inclading the oater orbital angles.

Upper border of orbit with two notches or fissures; there is a gap in tha lower border, and the inner angle of this border is usually dentiform and moderately prominent. The antennules fold transversely.

Basal antenna-joint short and broad; its outer angle forms a lobale which usaally fills the orbital hiatas and meets the front, exclading the flagellum from the hiatas.

Epistome sufficiently long: buccal cavern squarish, broader than long : the efferent branchial canals usually well defined.

Chelipeds massive, longer than any of the legs, usually a little unequal: arm with spines; the inner angle of the wrist strongly spiniform, the outer angle usually armed with spinules; palm prismatic or tumid, generally with costm and some definitely placed spines; fingers strong, asually about as long as palm, strongly toothed.

Legs compressed: in the last pair the merus and carpus are shortened and broadened (the merus usually having a spine at the far end of the posterior border) and the propodite and dactylus typically foliaceons for swimming.

The abdomen is as in Neptunus.
Although the name Oharybdis has the priority, and although I cannot admit that anything short of absolate identity-letter for letterjustifies any charge of "preoconpation," I regret to discard a name that, like Goniosoma, has been in use without any shadow of misunderstanding, for nearly 40 years.

I do so only beoanse I believe that Goniosoma, if the name be accepted, might with perfect propriety be merged again in Thalamita, and because, in any case, the name Coniosoma may conveniently be used for a subgenus.

I agree with Ortmann that Thalamonyx may quite reasonably be regarded as a subgenus of Charybdis, but for mere convenience I should prefer to sabdivide the latter genus into three sections, or subgenera, characterized as follows :-
I. The lobule at the external angle of the basal antennajoint joins the front and gompletely excludes the flagellum from the orbital hiatas. The posterior angles of the carapace may be accented or not, but the line that bounds the dorsum of the carapece posteriorly forms a curve with the postero-lateral borders. The four median teeth of the front are not very dissimilar from the two oatermost on either side. No spine on the posterior border of the arm

Goniosoma.
II. The lobule at the external angle of the besal antennajoint is as in Goniosoma; but the postarior border of the dorsum of the carapace is straight and forms a well-marked dog's-eared angle of junction with the postero-lateral borders. The four median frontal teeth are broad and truncated. \mathbf{A} spine at the end of the postarior border of the arm

Gomiobellenves.
III. The lobule at the external angle of the basal antennajoint does not nearly tonch the front, 80 that the flagellum stands in the upper part of the orbital hiatus. The posterior border of the dorsum of the carapace is atraight and forms either an angular junction, or a curve, with the postero-lateral borders. The four
median frontal teeth are larger and broader than the two outermost paira. A spine at the end of the posterior border of the arm may be present, or not.......... Gonionerpionus.

Key to the Indian species of the genus Charybdis (=Goniosoma.)

I. The antennal flagellam is completely excluded from the orbital hiatus: the ridge that bounds the dorsum of the carapace posteriorly forms a ourve with the postero-lateral borders : no spine on posterior border of arm (Goniosoma) :
A. No distinct transverse ridges on the carapace behind the lovel of the last apinc of the antiorolateral borders :-

1. Not more than three large spinem on the anterior border of the arm: the orbits have no decided dorsal inclination and their major diameter is never more than one-third the width of the interorbital apece:-
a. First epine of antero-lateral border anteriorly trancated and notohed : sixth abdominal tergum of male with curved and gradually convergent sides...... \qquad
G. crweiforum.
G. Rivers-Andersoni.
c. First apine of antero-lateral border aoute : the aides of the aixth abdominal tergum of male parallel or slightly divergent in two-thirds or more of their extent:-
i. In acute spine on the posterior border of carpus of last pair of logs
ii. A sharply dentiform lobule at the outer end of the lower border of the orbit \qquad
iii. The major diameter of the true orbital cavity is barely a fourth the width of the interorbital space \qquad G. amanlation.
2. Four or more large apines on the antarior border of the arm: the orbits have a etrong dormal inclination and their major
J. II. 7

$$
\begin{aligned}
& \text { diameter is nearly half the width of the } \\
& \text { interorbital space : first tooth of antero- } \\
& \text { lateral border anteriorly truncated and } \\
& \text { notched }
\end{aligned}
$$

G. miles.
B. A transverse ridge on the cardiac region, as well as one or two in the posterior half of either branchial region :-

1. Two additional ridges in the posterior half of either branchial region; all the spines of the antero-lateral border well developed:-
a. Carapace moderately broad: first spine of antero-lateral border truncated, the last not enlarged : orbits withont dorsal inclination : ohelipeds strongly granular and nodular
b. Carapace very broad: last spine of the antero-lateral border twice as long as any of the others : orbits with strong dorsal inclination : a stout tooth on the lobule of the basal antenna-joint
G. variegatum.
2. One additional ridge on either branchial region: second spine of antero-lateral border rudimentary
G. orientale.
C. A transverse ridge on the cardiac region, but none on the posterior half of the branchial region:-
3. Carapace flat: 8 spines on anterior border of arm, 5 on upper surface of hand : sides of 6 th abdominal tergum of male curved and gradually convergent \qquad
4. Carapace convex: 2 (hardly ever 3) apines on anterior border of arm:-
a. Carapace about two-thirds as long as broad: 8 spines on the hand: sides of 6 th abdominal tergum of male parallel for half their extent
b. Carapace about four-fifths as long as broad: 2 spines on the hand: sidea of 6th abdominal tergam of male ourved: the two middle frontal teeth remarknbly prominent
G. callianassa.
G. rostratum.
II. Antennal flagellum completely excladed from orbital hiatas : posterior border of dorsum of carapace straight and forming a dog's-eared angalar junction with the postero-lateral borders: the posterior border of the arm ends in a spine (Goniohellenus) :-
A. Last apine of the antero-lateral border smaller
than any of the others G. ornatus.
B. Last spine of the antero-lateral border far larger than any of the others \qquad
III. The lobular process of the basal antenna-joint does not nearly touch the front, so that the fiagellum stands in the apper part of the orbital hiatus (Gonionoptunus):-
A. Posterior border of dorsum of carapace forming an angalar junction with the postero-lateral borders: the posterior border of the arm ends in a spine:-
5. Transverse ridges of carapace faint: a large red impermanent spot on either branchial region
6. Transverse ridges of carapace prominent: a persistent emall dark brown spot on either branchial region
B. Posterior border of dorsum of carapace forming a curve with the postero-lateral borders: no apine on the posterior border of the arm: carapace little transverse, the extent of the fronto-orbital border nearly equal to the greatest breadth of the carapace
G. hoplites.
G. truncatus.
G. binaculatus.

Besides the species mentioned in the above Key, other two, which I have not seen, are included in the Indian Fanna by other authors. They are G. erythrodactylum (Lamk.) and G. sesdentatum (Herbst) A. M. E.
7. erythrodactylum is recognized, according to A. Milne Edwards, by having seven teeth, of which the second and fourth are rudimentary, on the antero-lateral borders.
G. sexdentatum, A. Milne Edwards, if not of Herbst, is very probably the same as de Man's G. merguiense.]
28. Oharybdis (Goniosoma) crucifera, (Fabr.) A. M. Edw.

Rumph, Amboinsche Rariteitk. pl. VI. fig. P.
Cancer sexdentatus, Herbst, Krabben pl. viii. fig. 53 (1790).
Cancer cruciatus, Herbst, Krabben pl. II. V. 155, pl. Ixxviii. fig. 1 (1794.)
Portunus crucifer, Fabricins, Knt. Syst. Sappl. p. 864 (1798); Bosc, Hiat. Nat. Crust. I. p. 218: Latreille, Hist. Nat. Crust. VI. p. 14 and Encyol. Meth. X. p. 191.

Thalamita crucifora, Milne Edwards, Hist. Nat. Crust. I. 462 : Lacas, Hist. Nat. Anim. Art. Crust. p. 104: Haswell, Cat. Austral. Crust. p. 81.

Oceanus crucifer, De Haan, Fann. Japon. Crust. p. 40.
Charybdis crucifera, Dana, U. S. Expl. Exp. Crust. pt. I. p. 286, pl. xvii. fig. 11 a-c : Stimpeon, Proo. Ac. Nat. Sci. Philad. 1858, p. 89.

Goniosoma cruciferum, A. Milne Edwards, Archiv. du Mus. X. 1861, pp. 371. 885 : Tozzetti, "Magenta" Crust. p. 82, pl. vi. fig. 2 a-g: Nanck, Zeits. Wiss. Zool. XXXIV. 1880, p. 61, pl. i. fig. 27. (gastric teeth): Maller, Ver. Ges. Nat. Basel, VIII. 1886. p. 475: Miers, "Challenger" Brachyara p. 191: de Man, Archiv. f. Naturges, LIII. 1887, 1. p. 334, and Journ. Linn. Soo. Zool., XXII. 1887,

1888, p. 79, pl. v. fig. i, and Zool. Jahrb., Syat., VIII. 1895, p. 559 : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 218 : Walker, Journ. Linn. Soc., Zool., XX. 1886-80, p. 110 : Ortmann, Zool. Jahrb., Byat., VII. 1898-94, p. 81 : Henderson, Trans. Linn. Soc., Zool., (2) V. 1898, p. 874.

Carapace not distinctly pilose, about two-thirds as long as broad, slightly convex, nearly smooth to the naked eye, the regions ill-defined. A finely granular curved line-broken on the gastric region-traversea it between the last spines of either antero-lateral border, and two similar lines-the anterior widely broken in the middle - cross the anterior part of the gastric region : these are the only ridges on the carapace, and they become faint with age.

The front is rather deeply cat into six prominent regular blentpointed teeth, not including the inner sapra-orbital angles, none of which project much beyond the others.

The antero-lateral borders are cut into six teeth including the outer orbital angles, of which the tirst is truncated and notched or bifid, the last is almost spine-like but is little more salient than the others, while the other four are broad anteriorly-acuminate lobes.

The posterior border of the dorsal surface of the carapace forms a curve with the postero-lateral borders.

The orbits have but little dorsal inclination: the major diameter of their cavity is a third the width of the inter-orbital space: neither the inner angle nor the lobule at the outer end of their lower border are dentiform, though the latter lobule is well defined.

The lobule at the antero-external angle of the basal antenna-joint has a ridge, but not a tooth.

The chelipeds are nearly $2 \frac{1}{2}$ times the length of the carapace (in the male) and except for definitely placed coster and spines are smooth : the hands are a little unequal in size. The arm has three enlarged spines on the anterior (inner) border and a spinule at the far end of the inferior border, but the posterior border is unarmed. The wrist has the inner angle strongly spiniform and has three spinules and some smooth ridges on the outer surface. The hands are tamid but not inflated : they are 5-costate and have 4 spines on the upper surface. In both hands the fingers, which are strongly toothed, are as long as their palm.

In the last pair of legs the merus is about three-fourths as long as broad and has a spine at the far end of the posterior border; the carpus is unarmed, and there are one or two inconspicuous denticles near the far end of the posterior border of the propodite.

The abdomen in both sexes has the 2nd and 3rd terga bluntly carinate: in the male the $6 * h$ tergum is much broader than long and has curved and gradually convergent sides.

In spirit the gastric region is purplish brown with a large yellow cross.

Size large : good specimens in the Indian Museum have the carapace 65 millim. in extreme length and 95 millim. in extreme breadth.
29. Oharybdis (Goniosoma) Rivers-Andersoni, n. sp.

Very closely related to C. crucifera, from which it only differs in coloration, in having the epibranchial regions most remarkably swollen above the general dorsal surface of the carapace, in having the frontal teeth very acute, the first tooth of the antero-lateral border not emarginate, and the transverse ridges of the carapace even more obscure.

Carapace perfectly free from pubescence, smooth and polished; its length is a little more than two-thirds its breadth; the gastric region is slightly tamid and the epibranchial regions are very strongly tamid above the rest of its surface. A fine and very faint strongly-arched line crosses the carapace between the last spine of either antero-lateral border, and a still fainter one crosses the gastric region anteriorly: these are the only lines on the carapace and are as faint in the young as in the adult.

Front cat into 8 acute teeth-including the inner sapra-orbital angles-arranged in four distinct pairs, the outer pair on either side being almost spine-like.

Antero-lateral borders quite like those of O. crucifera, except that the first tooth is obliquely truncated with the inner angle very acute.

Posterior border carved as in 0 . orucifera.
Inner angle of lower border acately dentiform : the orbits otherwise as in C. crucifera.

Chelipeds exactly as in C. crucifera except that the hands are less inclined to be tumid.

Last pair of legs as in O. crucifera except that the merns is hardly two-thirds as broad as long.

Abdomen in both sexes as in O. crucifera.
Colours in spirit: salmon-red, the frontal and antero-lateral borders and the boundary between the branchial and hepatic regions with numerous large creamy spots; foor similar spots in a square on the gastric region and a very large one on either branchial region near the middle of the postero-lateral border; fingers blood-red in their distal half, the extreme tips milk-white.

In the Indian Museam are 9 specimens from off the Konkan coast, $56-58$ fms., on a bottom of fine sand. The carapace of the largest specimen is 50 millim. in length and 78 millim. in extreme breadth.
30. Charybdis (Goniosoma) quadrimaculata, A. M. Edw.

Goniosoma quadrimaculatum, A. Milne Edwards, Archiv. dn Mas. X. 1861, pp. 375, 885, pl. xxxiv. fig. 3 : Ortmann. Zool. Jahrb., Syst., V1I. 1893, p. 82.

Goniosoma quadrimaculatum, A. M. Fidw. Portunus lucifer Fabr., de Man, Journ. Linn. Soc., Zool. XXII. 1887-88, p. 83 footnote.

Goniosoma luciferum, J. B. Henderson, Trans. Linn. Soc. Zool., (2) V. 1893, p. 374.

Differs from 0 . crucifera in the following particulars:-
(1) the carapace thongh in sculpture of surface similar, is very much broader, its length being much less than two-thirds its breadth :
(2) the frontal teeth are deeper cut and those of the second pair slope outwards rather more:
(3) the teeth of the antero-lateral borders are regular and are claw-shaped, instead of being broad anteriorly-acuminate lobes; the first is acute and except in its smaller size is similar to the next four, and the last is more spine-like and more prominent :
(4) the orbits are smaller, their diameter being only two-sevenths the width of the inter-orbital space; both the inner angle and the lobule at the outer end of the lower border are acutely dentiform:
(5) the chelipeds in the male are not very mach more than twice the length of the carapace; the hand is 6-costate and the costor are commonly milled in their proximal half, and there are 5 spines on the upper surface of the hand; the fingers of the larger cheliped are shorter than the palm :
(6) in the last pair of legs the merus is nearly twice as long as broad, and the posterior border of the propodite is strongly serrated throughout:
(7) the 6th tergum of the male abdomen has its sides parallel or -even slightly divergent in at least two-thirds of its extent:

Colours in spirit yellowish brown with 2 large white spots on either branchial region.

In the Indian Museum are 20 specimens from all parts of the coast of the peninsula : the carapace of the largest specimen is 60 millim. leng and $\xi 8$ millim. in extreme breadth.
31. Oharybdis (Goniosoma) annulata (Fabr.) A. M. Edw.

Portwnia: anmulatus, Fabricins, Ent. Syst. Suppl. p. 364 (sec. A. Milne Efwards.). ?? Camier fasciatus, Herbst Krabben, III. i. 62, pl. xlix. fig. 5. (sec. A. M. Edw). ? Oanes r semdentatus, Herbst, Krabben, pl. vii. fig. 52.
Port unue annulatus, Latreille, Hist. Nat. Crast. VI. p. 15 (sec. A. Milne Edwards). Thalamito: annulata, Milne Edwards, Hist. Nat. Crust. I. 463 (sec. A. M. Edw.).
Goniosomi annulatum (Fabr.), A. Milne Fdwards, Archiv. du Mas. X. 1861,

Mus. V. 1883, p. 151 and Zool. Jahrb., Syat., VIII. 1894-95, p. 561 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 82 : J. R. Henderson, Trans. Linn. Soc. Zool., (2) V. 1893, p. 375.

Goniosoma orientale Heller (nec Dana), "Novara" Crust. p. 29, pl. iii. fig. 3 ($\mathbf{s e c}$, de Man).

Differs from C. crucifera in the following particulars:-
(1) the carapace is more convex, and the transverse lines are even fainter, especially on the gastric region :
(2) the frontal teeth are deeper-cnt and sharper (in adults):
(3) the teeth of the antero-lateral borders are regular; the first is small and acute, the second is not mach larger than the first, and the last (in adults) is smaller than any of the three immediately in front of it:
(4) the major diameter of the orbit is only a fourth the width of the inter-orbital space : the inner angle of the lower border of the orbit is dentiform and strongly salient, and the lobule at the outer end of this border is ill-defined :
(5) the chelipeds are not mach more than twice the length of the carapace (in the male); the hand has 5 spines on the upper surface, but two of them-those immediately behind the finger-jointare tubercles rather than spines; the fingers of the larger cheliped are as long as the palm, those of the smaller cheliped are longer than the palm:
(6) in the last pair of legs the merus is nearly twice as long as broad and the posterior border of the propodite is serrated in a large part of its extent:
(7) the 6th abdominal tergum of the male is as long as or nearly as long as broad and has its sides parallel in about three-fourths of their extent.

From Charybdis quadrimaculata this species is distingnished by the narrower carapace, by the smaller orbits and the different form of the. lower orbital border, and by the greater length of the 6th tergam of the male abdomen.

In the Indian Musenm are 7 specimens from Karachi and 1 from Bimlipatam, besides 1 from Penang. The carapace of the largest specimen is 48 millim. long and 70 millim. in extreme breadth.

But for high contrary authority, I should consider this species to be identical with the Carcer sexdentatus of Herbst's pl. vii. fig. 52.
32. Oharybdis (Goniosoma) merguiensis, de Man.

Goniosoma merguiense, de Man, Journ. Linn. Soo., Zool., XXII. 1887-88, p. 82, pl. v. fig. 8, 4, and Zool. Jahrb., Syst., 1894-95 p. 560.

Goniosoma Hellori, Henderson, Trang. Linn. Soc., Zool, (2) V. 1893, p. 375.

Very closely resembles C. quadrimaculata, bat may be distinguished from that species by the following characters:-
(1) the length of the carapace is two-thirds the breadth :
(2) the frontal teeth, in the adult are more acute :
(3) the little lobule at the outer end of the lower border of the orbit is not dentiform :
(4) there is an acute spine on the posterior border of the carpus of the last pair of legs (as well as the usual one on the merus) :
(5) the 6th abdominal tergum of the male is, like that of O. annulata, as long as broad, or nearly so, with the sides parallel or slightly divergent in about three-fourths of their extent.

For the rest, this species differs from 0 . crucifera in the same particulars as O. quadrimaculata does, though the last spine of the antero-lateral border is often more prominent than in C. quadrimaculata.

In the Indian Musenm are specimens, 22 in number from Mergai, Andamans, Karachi and the Persian Gulf-besides 1 from Singapore 2 from Hongkong. The largest has the carapace 46 millim. long and 69 millim. in extreme breadth.

But for high contrary authority I should have felt inclined to refer this species to the Cancer fasciatus of Herbst (Krabben III. i. 62, pl. xlix. fig. 5).

33. Oharybdis (Goniosoma) affinis, Dana.

Charybdis afinis, Dans, Proc. Ac. Nat. Soi. Philad. 1858, p. 85, and U. 8. Expl. Exp. Orust. pt. I. p. 286, pl. xvii. figs. 12 a-c.

Goniosoma affine, A. Mrine Edwarde, Arohiv. du Mus. X. 1861, pp. 884, 385 : de Man, Journ. Linn. Soo., Zool. XXII. 1887-88, p. 80, pl. V. fig. 2. and Zool. Jahrb., Syst, VIII. 1894-95, p. 659 : J. B. Henderson, Trans. Linn. So0, Zool. (2) V. 1893, p. 874.

Differs from O. crucifera in the following particulars:-
(1) the carapace is flatter, its transverse ridges are much more distinct and there is an additional one across the cardiac region, and the regions are better defined :
(2) the frontal teeth are more acute and are not so parallel :
(3) the first tooth of the antero-lateral border though distinctly emarginate anteriorly has its inner angle acute, and the last tooth is conspicuonsly larger and more prominent than the last but one, the other teeth are more regularly cut and the antero-lateral border as a whole is less oblique:
(4) the inner angle of the lower border of the orbit is distinctly dentiform :
(5) the chelipeds are only about twice the length of the carapace in the male: the hands are 6 or 7 -costate and have 5 spines on the
opper surface, the palms are more swollen (in the adult) and in the smaller cheliped the fingers are decidedly longer than the palm :
(6) the surface of the carapace and chelipeds is much more pabescent, and the size is much smaller.

In the Indian Museum there are 6 specimens, from Mergui, Akyab, and the Orissa coast : the carapace of the largest is 32 millim. long and 48 millim. in extreme breadth.

34. Charybdis (Gonicsoma) callianassa (Herbst) A. M. Edw.

? Cancer callianassa, Herbst, Krabben. III. ii. 45; pl. liv. fig. 7.
Goniosoma callianassa, A. Milne Edwards, Archiv. du Mus. X. 1861, pp. 382, 385. (part).

Goniosoma variegatum. Miers, Zool. H. M. S. Alert p. 232 : Cano, Boll. Soc. Nat. Napoli, III. 1889, p. 219 : Thellwitz, Abh. Zool. Mus. Dresden, 1890-91, No. 3, p. 47 : Henderson, Trans. Linn. Soc, Zool., (2) V. 1898, p. 376.

A small species, the carapace usually being about 23 millim. long. and about 36 millim. in extreme breadth.

Length of carapace about two-thirds the extreme breadth (except in the majority of adult females, in which the last spine of the anterolateral borders is much prolonged).

Carapace decidedly convex, especially in its posterior half, covered with short pile and crossed transversely by fairly well marked very faintly granular ridges, which are disposed as in O. crucifera, except that there is an additional one across the cardiac region.

Front cut into six teeth (not inclading the inner supra-orbital angles) of which the middle two are slightly the most prominent, the second on either side are broadish with a strong outward slope, and the third on either side are the narrowest and most acute.

Antero-lateral borders cut into six teeth (inclading the enter orbital angle) of which the first is anteriorly notched with the inner angle acute, and the last is spinelike and from $1 \frac{1}{3}$ to twice (in many adult females nearly three times) the length of the last but one: all the teeth have their free edges finally serrulate (except in the case of the posterior edge of the last).

The posterior border of the dorsal surface of the carapace forms a eurve with the postero-lateral borders.

Orbits with a perceptible, but not strong, dorsal inclination : themajor diameter is a little more than a third the width of the interorbital space: the inner angle of the lower border is dentiform, bat the lobuleat the outer end of this border is hardly distinguishable.

There is a granular ridge, but no tootb, on the lobale at the outer argle of the basal antenaa-joint.
J. II. 8

The chelipeds are about $2 \frac{1}{4}$ times the length of the carapace (in the adult male), and when denuded are smooth and polished except for costso on the wrist and hand, and for granules on the far end of the upper surface of the arm. There are only two enlarged spines on the anterior border of the arm, and the posterior border of the arm is spineless. Wrist with granular costas on the apper and outer surface, with the inner angle strongly spiniform, and with three spinules at the outer angle. Palm inflated, barrel-shaped, 6-costate, the four npper coster granular ; only three spines-and those small-on the apper sarface. Fingers of the larger cheliped a good deal shorter than the palm.

Merus of last pair of legs $\frac{7}{8}$ to $\frac{8}{4}$ as broad as long, with a spine, as usual, near the far end of the posterior border : the same border of the propodite is smooth.

The 2nd and 3rd abdominal terga in both sexes-as well as, to a less extent, the 4th in the female-are transversely carinate: the 6th tergam in the male is transversely oblong with the anterior (true posterior) angles rounded.

In the Indian Museum are 66 specimens, chiefly from the Madras and Orissa coasta, but also from Bombay and Karáchi.

The carapace of an exceptionally large male is 29 millim. long and 46 millim. in extreme breadth.

This species is easily distinguished from C. variegata De Haan, with which it appears to have been confounded, by the following characters:-
(l) the carapace is very decidedly convex in its posterior half, the regions are less clearly defined, and there is only one transverse ridge on the epibranchial regions-namely the usual one that rans in from the last antero-lateral tooth :
(2) the four middle frontal teeth are blunter and more divergent, and the third on either side is larger and more prominent :
(3) the edges of the teeth of the antero-lateral border are serrulate:
(4) the eyes are smaller and the orbits have a much less marked dorsal inclination; the little lobale at the outer end of the lower border of the orbit is obsolete, instead of being a sharp independent denticle.
(5) there is a ridge, but no tooth, on the lobe of the basal antennajoint.
(6) there are only 2 large spines on the anterior border of the arm, there are no squamiform granules on the under surface of the arm and hand, there are three spinules on the outer surface of the wrist; the palms are more inflated, their costæ less numerous and less salient, and both the spines immediately behind the finger-joint are obsolete:
(7) the sixth abdominal tergum of the male is transverse oblong with the anterior angles rounded off.
C. callianassa has a considerable resemblance to O. affinis Dana, from which it may be distingnished by the following characters:-
(1) the carapace is convex instead of nearly flat, the frontal teeth differ, and the teeth of the antero-lateral border are serrulate :
(2) the orbit is more dorsally inclined:
(3) there are only two enlarged spines on the anterior border of the arm : the hands are barrel-shaped and have only 3 spines on their apper surface:
(4) the 6th abdominal tergum of the male has the sides parallel or almost divergent in two-thirds of their extent, whereas in C. afinis they form gradually converging carves.

35. Charybdis (Goniosoma.) rostrata, A. M. Edw.

Gowiosoma rostratum, A. Milne Edwards, Archiv. du Mus. X. 1861, pp. 879, 885, pl. Exxv. fig 2 : J. R. Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 377.

A small species : the length of the carapace in adults being somewhere about 20 millim., and the extreme breadth about 25 millim.

Carapace abont four-fifths as long as broad in the male, but not quite so long in the female, moderately convex, crossed transversely by granular ridges which are disposed as in C. crucifera, except that there is an additional one across the cardiac region (just as in C. afinis and O. callianassa), densely though finely pilose.

Front as a whole decidedly prominent, cat into six teeth (not including the inner supra-orbital angles), of which the middle two are bluntly pointed and project far beyond the others, the next on either side are broad and slope outwards, and the third on either side are small narrow and nearly straight.

Antero-lateral borders out into six serrulate teeth, of which the first is very acate and the last is more spinelike than the others.

The posterior border of the dorsal surface of the carapace forms a carve with the postero-lateral borders.

Orbits without any particular dorsal inclination, the major diameter not mach less than half the width of the interorbital space, the inner angle of the lower border dentiform, the lobale at the oater end of the lower border distinct bat not dentiform.

A strongish granular ridge on the lobale of the basal antennajoint.

Chelipeds less than twice as long as the carapace even in the male, nearly smooth when denuded. Arm with 2 spines on the anterior border and none on the posterior border. Wrist with a strong spine at the inner angle and with two-less commonly three-spinules at the outer angle. Hands inflated in the male, but not much so in the female,

6-costate, the four upper costæ granular ; only two spines-and those small-on the upper surface of the hand. Fingers longer than the palm in the smaller cheliped, as long as the palm in the larger cheliped.

The merus of the last pair of legs is nearly as broad as long and has the usual spine on its posterior border; the posterior border of the propodite is smooth.

The 6th tergam of the male abdomen is broader than long and has curved and gradually convergent sides.

In the Indian Museum are 98 specimens, chiefly from the northera parts of the Bay of Bengal, Mergui, and the Gulf of Martaban, bat also from off the Andamans and off Ceylon.
36. Charybdis (Goniosoma) variegata (De Haan).
? Portunus variegatus, Fabricius, Ent. Syst. Suppl. p. 364.
? ?? Cancer callianassa, Herbst. III. ii. 45, pl. liv. fig. 7.
? Thalamita callianassa, Milne Edwards, Hist. Nat. Crast. I. 464.
Charybdis variegatus, De Haan, Faun. Japon. Crust. pl. i. Gg. 2 : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 39.

Goniosoma callianassa, A. Milne Edwards, Archiv. da Mne. X. 1861, pp. 382, 385 (part).

Goniosoma variegatum; var. callianassa, J. R. Henderson, Trans. Linn. Soo., Zool., (2) V. 1893, p. 377.

A small species : the carapace in the adult about 20 millim. long and about 35 millim. in extreme breadth.

Carapace about four-sevenths as long as broad (or about two-thirds as long as broad without the enlarged lateral spines), slightly convex, the regions for a Goniosoma well defined, crossed transversely by numerous salient granular ridges arranged as in G. natutor-the ridges standing out from the copions short pile with which the carapace is covered.

Front cut into 6 rather pointed teeth (not inclading the inner sapra-orbital angles) of which the middle two are the most prominent and the outer one on either side is the least prominent and much the slenderest.

Antero-lateral borders cut into six teeth (including the outer orbital angle) which gradually increase in size from before backwards, the last being a salient spine about twice as long as the last but oneNeptunus like.

The posterior border of the dorsal surface of the carapace forms a curve with the postero-lateral borders.

Eyes large: the orbit, which has a strong dorsal inclination, is about two-fifths the width of the interorbital space; the inner angle of its
lower border, though not prominently dentiform, is acuminate, and the lobule at the outer end of this border is sharply dentiform.

There is a prominent tooth on the lobule at the outer angle of the basal antennal joint : this is present in no other Indian species.

Chelipeds about $2 \frac{1}{3}$ times the length of the carapace (in the male): all three surfaces of the arm and almost all parts of the surface of the hand are covered with granular squamiform markings. . Arm with 3 enlarged spines on the anterior border, the posterior unarmed. Wrist costate on the apper and outer surface; the inner angle spiniform; only two spinules at the outer angle. Hands (in adults only) more than usnally unequal for a Goniosoma : in one cheliped (adult) the palm is swollen and markedly longer than the fingers, in the other it is not swollen and is not much longer than the fingers: the hand is 7-costate and there are 4 spines on its upper surface.

The merus of the last pair of legs is about four-fifths as broad as long and has a spine near the distal end of its posterior border, the propodite has one or two inconspicuous spinules near the far end of its posterior border.

In both sexes the 2nd and 3rd abdominal terga are transversely keeled : in the male the 6th tergum is a good deal broader than long and has strongly curved sides.

In the Indian Masenm are 4.3 specimens from the Madras coast and the Persian Gulf, besides one from Nagasaki and one from Hongkong.
37. Charybdis (Goniosoma) natator (Herbst) A. M. Edw.

Cancer natator, Herbst, Krabben. II. v. 156, pl. xl. fig. 1.
Rortunus sanguinolentus, Bosc, Hist. Nat. Crast. I. p. 218.
Thalamita natator, Milne Edwards, Hist. Nat. Crust. I. 463, pl. xvii. figs. $13,14$.
Charybdis natator, De Haan, Faan. Japon. Crust. p. 10.
Charybdis granulatus, De Hean, Faan. Japon. Crust. p. 42, pl. i. fig. 1: Krauss, Sadafr. Crust. p. 24: Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 39.

Goniosoma natator, A. Milne Edwards, Archiv. du Mus. X. 1861, pp. 370, 385 : Hilgendorf, MB. Ak. Berl. 1878, p. 801 : Miers, Zool. H. M. S. Alert, pp. 518, 539 : F. Maller, Verh. Ges. Nat. Basel, VIII. 1886, p. 475: de Man, Archiv. f. Natarges. LIIl. 1887, i. p. 834, pl. xiii. fig. 5, and in Weber's Zool. Ergebn. Niederl. Ost.Ind. II. 1892, p. 285 : Walker, Journ. Linn. Soc. Zool. XX. p. 110 : J. R. Henderson, Trans. Linn. Sac., Zool., (2) V. 1893, p. 374.

Length of carapace about five-sevenths the breadth.
Carapace slightly convex, with a somewhat mangy pile, crossed transversely by several rather coarse granular more or less broken ridges: the most conspicuons of these ridges rans-broken only by the cervical groove-right across between the last teeth of the antero-lateral borders, and in front of this are two-the anterior one widely divided in the middle-on the gastric region, while behind it are two short ones
on either branchial region and a bow-shaped one on the cardiac region.

Front cat into 6 bluntly-rounded teeth (not including the inner supra-orbital angles) of nearly equal size.

Antero-lateral borders cut into 6 teeth, of which the first (the outer orbital angle) is blunt or truncated, the last is rather smaller than those immediately in front, and the intervening four though anteriorly acnteespecially in the young-tend to grow blunt.

The posterior border of the dorsal surface of the carapace forms a curve with the postero-lateral borders.

Orbit without any particular dorsal inclination, its major diameter is about two-sevenths the width of the interorbital space: the inner angle of the lower border is not prominent and hardly dentiform, the lobule at the outer end of this border though well defined is not dentiform.

Chelipeds about $2 \frac{2}{3}$ times as long as the carapace (in the adalt male), their under surface is covered with transverse squamiform tubercles which are specially regular and distinct on the hand, their other surfaces also are beset with tubercles which are more or less distinctly squamiform : the space between the tuberc̣les is furred. Three enlarged teeth (besides smaller ones) on the anterior border of the arm, the posterior border unarmed. Inner angle of wrist strongly spiniform, outer angle with three small spines. Hand beset with longitudinal series of tabercles, and having 4 or 5 spines on the upper surface: fingers about as long as hand.

The merus of the last pair of legs is about two-thirds as broad as long and has a strong spine on the posterior border, and the same border of the propodite is armed with spinales that become very indistinct with age.

In both sexes the 2nd-4th abdominal terga are transversely keeled : in the male the 6th tergum is as long as broad and has the sides parallel or even slightly divergent in three-fourths of their extent.

Colours in spirit, mottled, with much admixture of red, the ridges of the carapace dark red.

In the Indian Musenm are 10 specimens from Ceylon, Madras, and Pondicherry, besides 1 from Singapore. In the largest specimens the cacapace is about 70 millim. long aud about 100 millim. broad.

38. Charybdis (Goniosoma) miles (De Haan).

Portunus (Charybdis) miles, de Haan, Fann. Japon. Crust. p. 41, pl. xi. fig. 1 : Stimpson Proc. Ac. Nat. Sci. Philad. 1858, p. 39.

Goniosoma miles, A. Milne Edwards, Archiv. du Mus. X. 1861, pp. 378, $885=$ Ortmann, Zool. Jahrb., Syst., VII. 1893, p. 81.

Size medium : an adult female in the Indian Museum has the carapace 43 millim. long and 59 millim. broad.

Carapace not very broad, its length aboat three-fourths its breadth, little convex, smooth or granular in places when denuded of copious short pile; its anterior half only is crossed transversely by faint granalar lines disposed as in C. crucifera.

Front cat into six acute teeth, not inclading the acately dentiform inner supra-orbital angles, of which the two middle oues hardly project beyond the others and the outermost on either side are the narrowest and most acute.

Antero-lateral borders very little oblique, cat into 6 acutely acuminate teeth, of which the first (the onter orbital angle) is broad and anteriorly notched with the inner angle acuminate, and the last is not larger or more prominent than the others.

The posterior border of the dorsal surface of the carapace forms a curve with the postero-lateral borders.

Eyes large: the orbit has a considerable dorsal inclination and its major diameter is nearly half the width of the interorbital space; of the two fissures in its roof the inner is a distinct gap; the inner angle of the lower border is acutely dentiform.

The antero-external angle of the meras of the external maxillipeds is somewhat produced laterally.

The chelipeds are long and, for a Goniosoma, are slender; their undersurface is finely granular (as also is a large part of the apper surface of the arm) the granules of the hand showing a squamiform arrangement. The arm has four large spines on the anterior border and a spinule at the end of the lower border, but the posterior border is unarmed. The hand is 6 -costate, most of the costm being finely granular, and has 4 acate spines on the apper surface. Fingers slender, very acnte, sharply toothed, longer than the palm, which is not swollen.

The last pair of legs have the merus about two-thirds as long as broad and are unarmed except for a spine on the posterior border of the merus and two or three denticles near the far end of the posterior border of the propodite.

The 6th tergum of the male abdomen is much broader than long and has carved and gradually converging sides.

Colours in life red, the tips of spines light, chalipeds mottled red, fingers banded dark and light red.

In the Indian Museum are a male and egg-laden female from the Gulf of Martaban, 53 and 67 fms .

[^3]de Man, Notes Leyden Mus. I. 1879, p. 60, V. 1883, p. 151, and XV. 1898, p. 286 : Lonz and Richters, Abh. Senck. Nat. Ges. Frankfart, XII. 1881, p. 428 : Cano, Boll: Soc. Nat. Nupol. III. 1889, p. 220 : J. R. Henderson, Trans. Linn. Soc. Zool. (2) V. 1893, p. 375.
? Goniosoma dubium, Hoffmann in Pollen and Van Dam, Bech. Fann. Madagasc, V. 2, 1874, p. 11, pl. ii. figs. 6-8.

Carapace about two-thirds as long as broad, crossed transversely by salient granular lines which have the same disposition as in C. variegata De Haan, except that there is only one on either branchial region behind the level of the last spine of the antero-lateral borders.

Front cut into 6 truncated teeth, not including the inner sapraorbital angles.

Antero-lateral borders very little oblique, cat into six teeth (including the outer orbital angles) of which the second is rudimentary and looks like a denticle cut out of the base of the first, while the last is not enlarged in adults, though in the young it may be.

The posterior border of the dorsal surface of the carapace though. straight forms a curve with the postero-lateral borders.

Orbit without any particular dorsal inclination, its major diameter a little more than a third the width of the inter-orbital space, the inner angle of the lower border broadly dentiform, the lobule at the outer end of this border distinct but not dentiform.

Arm with 3 spines on the anterior border and none on posterior border: wrist with a strong spine at the inner angle and 2 or 3 spinules on the outer: hand not tumid, 5 spines, of which 4 are large, on the upper surface.

In the fifth pair of legs the merus is nearly twice as long as broad, and has the usual spine on the posterior border: the same border of the propodite is serrated.

In the Indian Museum are five specimens, from the Pedro Shoal, from the Madras coast of the Galf of Manar, and from off the Arakan. coast.

This species is distinguished from 0 . anisodon, which, though not known to occur in Indian Seas, is found at Singapore, by the presence of granular ridges on the carapace, by the five spines (instead of 2) on the hand, and by the serrated (instead of smooth) posterior border of the propodite of the last pair of legs. It is one of the conspicuons links between Goniosoma and Thalamita.

> 40. Charybdis (Goniohellenus) ornata, A. M. Edw.

Thalamita truncata, De Haan, Faun. Japon. Crust. p. 48, pl. ii. fig. 3 and pl. xii. fig. 3 only of

Charybdis truncata, Stimpson, Proc. Ac. Nat. Sci. Philed. 1858, p. 39.

Goniosoma ornatum, A. Milne Fiwards. Archir. du Mus. X. 1861, pp. 376, 385: Miern, P. Z. S. 1879, pp. 20, 88, and Challenger Brachyura p. 191 : Ortmann, Zool. Jahrb., 8yst., VII. 1898, p. 83 : J. R. Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 876 : de Man, Zool. Jahrb., Byst., VIII. 1895, p. 568.

A smallish species : the length of the carapace in adults is about 26 millim., its extreme breadth about 36 millim.

Length of carapace rather over two-thirds the extreme breadth. Carapace moderately convex with the regions fairly well defined, crossed transversely by well marked granular ridges which have mach the same disposition as those of C. crucifera, except that there are in addition (1) a broad one-divided in the middle line-on the cardiac region, and (2) a short and broad one-or traces of two-on either branchial region.

The front is cut into eight lobes (including the inner supra-orbital angles) arranged in four pairs, of which the outermost pair on either side are bluntly dentiform, and the two middle pairs are broad shallow and lobe-like.

The antero-lateral borders are out into six teeth (including the onter orbital angles) of which the first is obliquely truncated and the last is the smallest: the edges of all are entire.

The posterior border of the dorsum of the carapace is straight, and forms a somewhat ap-tarned or dog's-eared angle of janction with the postero-lateral borders.

The orbits have a strong dorsal inclination and their major diameter is not much less than half the width of the inter-orbital space : the inner angle of their lower border is broad and hardly dentiform.

The chelipeds are about $2 \frac{1}{3}$ times the length of the carapace (in the male) and all their surfaces are covered with granular transverse squamiform markings. There are 2-less commonly 3-enlarged spines on the anterior border of the arm and the posterior border ends in a spinale. Inner angle of wrist strongly spiniform, three spinules on the outer angle. Hand 6 or 7 costate-the costo with squamiform crena-tions-and with 4 spines on the apper surface. In adults the palm is fall and is longer than the fingers in the larger cheliped, bat shorter than the fingers in the smaller cheliped.

Merus of last pair of legs about two-thirds as broad as long, with the asual strong spine on the posterior border: the same border of the propodite is finely serrated.

In both sexes the 2nd and 3rd—and to a much less extent the 4thabdominal terga are transversely keeled: the 6th tergum in the male is broader than long and has strongly cnrved sides.

In the Indian Museum are 6 fine specimens from the mouth of the J. II. 9

Hughli and Coromandel coast and 1 from the Arakan coast-also 1 from Hongkong and 1 from Java.

41. Charybdis (Goniohellenus) hoplites, Wood-Mason.

Goniosoma hoplites, Wood-Mason, Ann. Mag. Nat. Hist. (4) XIX. 1877, p. 422 : Alcock and Anderson, J. A. S. B. Vol. LXIII. pt. 2, 1894, p. 184, and Ill. Zool. Investigator, Crast. pl. xxiii. fig. 6: Alcock, Investigator Brachyara, p. 67.

A small or smallish species.
The length of the carapace is not much more than half the extreme breadth measured between the tips of the last spine of the anterolateral borders.

Carapace covered with a dense short tomentum, convex, the regions well defined and fairly well areolated-the convexities of many of the areolæg granular. The gastric region is divided into three sub-regions, the cardiac into $t w o$, and there is a very pronounced and independent. swelling on the inner part of either branchial region.

A granular ridge crosses the middle of the gastric region transversely, and a similar ridge-strongly arched forwards-crosses each branchial region, beginning on the tip of the last epibranchial spine : these are the only transverse ridges on the carapace, although it sometimes happens that two of the granular subregional convexities of the anterior part of the gastric region are ridge-like.

The front is exactly like that of C. ornata, except that the outermost pair of teeth on either side are rather sharper.

The antero-lateral borders are cut into six teeth (including the outer orbital angle) of which the last is a Neptunus-like spine at least twice as long as those in front of it : the other 5 are square-cut lobales separated by wide and deep notches, and having their outer edge serrate and their anterior angle acnminate.

The posterior border of the dorsum of the carapace forms a strong. dog's-eared angle of junction with the postero-lateral borders.

The orbits are exactly as in C. ornata, except that the inner. fissure of the roof is wider and the outer fissure less distinct.

The chelipeds in typical specimens are exactly as in C. ornata, but it sometimes happens that the granulation of the arm does not cover the whole surface of that joint.

The last pair of legs are as in C. ornata, but the breadth of the merus varies from half to two-thirds the length of that joint.

The 6th tergum of the abdomen of the male is truncate-triangular, having almost no curve to the sides.

In the Indian Museam are 45 specimens from off the Coromandel coast, from about 50 to about 110 fathoms, and 4 from off the Indus Delta, 16 to 44 fms .

In an average specimen the length of the carapace is 26 millim., and the extreme breadth 48 millim.

Oharybdis (Goniohellenus) hoplites, var. vadorum.
Differs from the typical deep-sea form in the following particu-lars:-
(1) the carapace is depressed, therefore the granular convexities of the areolm stand out in higher relief :
(2) the last spine of the antero-lateral borders is rather longer :
(3) the spine at the inner angle of the wrist is much longer :
(4) Egg-laden females are hardly half the size.

In the Indian Museum are 9 specimens from the Orissa coast, $7 \frac{1}{2}$ to 20 fms., 6 from the Persian Gulf, and 3 from the Arakan coast.

Charybdis (Goniohellenus) hoplites var. pusilla.
This is a dwarf variety, egg-laden females having a carapace only about 9 millim. long and about 16 millim. in extreme breadth.

The carapace is of a thin texture, the chelipeds and legs are slenderer, and the dorsal bulge of the branchial regions is stronger and sharper.

In the Indian Museum are 300 specimens from off the Konkan cosst 56 to 58 fathoms.

Gonioneptrnus, Ortmann.

Gonionoptunus, Ortmann, Zool. Jahrb. Syst. etc., VII. 1893-94, p. 79.
This "genus," as Ortmann remarks, is a link between Charybdis ($=$ Gonioooma) and Neptunus. It has much the same bearing to Goniosoma that the "genus" Oronius has to Neptunus, and is one of those forms that would justify any general zoologist in uniting all the Lapine " genera" of systematists into one natural genus.

It differs from Goniosoma only in the fact that the broad lobalar process of the external angle of the basal antenna-joint is not in contact with the front, so that the antennal flagellum is not excluded from the orbital hiatus.
42. Charybdis (Gonioneptunus) truncata (De Haan).

Portunus truncatus, F'abricins, Fint. Syst. Suppl. p. 865, and Latreille, Hist. Nat. Crast. VI. p. 16, (fide A. M. Fdw.).

Thalamita truncata, Milne Edwards, Hist. Nat. Crast. I. 463 (fide A. M. Fdw.).
Portunus (Thalamita) truncatus, De.Hasn, Fann. Japon. Crust. p. 48, pl. xii. fig. 3 , f only.

Portwmus (Charybdis) truacatus, De Haan, Faun. Japon. Crust. p. 65, pl. xviii. fig. 2.

Goniosoma truncatum, A. Milne Edwards, Arohiv. du Mus. X. 1861, pp. 380, 885, pl. xxriv. fig. 4.

Gonionoptunus subornatus, Ortmann, Zool. Jahrb. Syst. VII. 1893, p. 79, pl. iii. fig. 9.

The lobule of the basal antenna-joint does not touch the front, so that the flagellum stands in the upper part of the orbital hiatus.

The length of the carapace slightly exceeds two-thirds of the extreme breadth.

Carapace covered with a dense short tomentum, moderately convex, the regions ill-defined, crossed transversely by fine granular ridges which have the same disposition and are almost as faint as those of O. crucifera : in addition there are small patches of granules on the cardiac and inner part of the branchial regions.

The front is cut into eight teeth (including the inner orbital angles) of which the middle four are broadly triangular and almost acute, while the pair on either side are sub-confluent and form a sort of reduplicated inner supra-orbital angle, somewhat as in Neptunac (Lupocycloporus) whitoi.

Antero-lateral borders cut into six teeth, of which the second is the smallest, and the 6th-though more spine-like-is hardly more prominent than those in front of it: all except the sixth are cut rather square, have the free edge serrate, and are anteriorly acuminate-much as in O. hoplites.

The posterior border of the dorsal surface of the carapace is practically straight and forms an obtuse angle of junction with either postero-lateral border.

Except that the inner angle of the lower edge of the orbit is dentiform and strongly prominent, and that the inner fissure of the roof is wider, the orbits, and the eyes, are as in C. ornata.

Chelipeds not much more than twice the length of the carapace, their upper surface more or less granular, their under surface with smooth-worn squamiform markings. Arm with two more enlarged and one or two less enlarged spines on the anterior border, and one at the far end of the posterior border. Wrist with 3 spinules on the outer angle and a large spine at the inner angle. Hands inflated, strongly 6 or 7-costate - the costm granular, and with 3 small spines on the upper surface: very similar, in fact, to those of O. callianassa. The fingers in the smaller cheliped are as long as, but in the larger cheliped are shorter than, the palm.

The merus of the last pair of legs is nearly as long as broad and has the usual spine on the posterior border: the same border of the propodite is smooth.

In both sexes the 2nd and 3rd abdominal terga are carinate-the 2nd strongly and sharply so. The 6th tergum of the male is truncatetriangular, the sides being very slightly sinuous.

In life the dorsal surface of the carapace is terra-cotta red and there is a good-sized crimson spot towards the inner side of the middle of either branchial region : the exposed dorsal surface of the chelipeds is reddish with numerous darker red markings.

In the Indian Museum there are 6 specimens, inclading an eggladen female, from the Gulf of Martaban 53-67 fathoms.

In the male the carapace is about 27 millim. long and about 39 millim. in extreme breadth : in the female it is a good deal smaller.
43. Charybdis (Gonioneptunus) bimaculata, Miers.

Goniosoma variegatwm var. bimaculatum, Miers, Challenger Brachyara, p. 191, pl. $\mathbf{x v}$. fig. 8.

As in 0 . truncata the lobule at the outer angle of the basal antenna-joint does not touch the front, so that the antennal flagellum stands in the orbital hiatus.

Length of carapace more than $\frac{3}{3}$ but less than $\frac{8}{4}$ the breadth.
Carapace flattish, covered with dense short tomentum, crossed transversely by salient granular ridges arranged exactly as in C. ornata.

Front almost similar to that of O. ornata, except that, as in C. truncata, the outer pair of teeth on either side are sab-confluent and form a sort of reduplicated inner supra-orbital angle.

Antero-lateral borders exactly as in C. truncata, except that the last (spine-like) tooth is at least half again as long as any of those in front of it.

Posterior border of dorsal surface of carapace exactly as in 0 . truncata.

Eyes and orbits as in O. ornata.
Chelipeds about $2 \frac{1}{4}$ times the length of the carapace. The lower border and the distal half of the upper sarface of the arm are granular : there are 2 or 3 spines on the anterior border of this joint, and the posterior border ends in a spine. Upper surface of wrist granular, the inner angle of this joint strongly dentiform, and there are 2 or 3 spinales on the outer angle. Hand in the adult inflated and, except that the equamiform markings of the under surface are almost obliterated, exactly similar to that of O. truncata.

Abdomen as in O. truncata.
Except that the merus is only about $\frac{1}{8}$ as long as broad, the last pair of legs are as in O. truncata.

In the Indian Museam are 2 small specimens, from Palk Straits.
and the Orissa coast, as well as one of the "Challenger" duplicates from Japan.

In the Japanese specimen there is a small dark spot near the middle of either epibranchial region.

Though the sculpture of the carapace and the dorsal inclination of the orbits do certainly give this species a considerable resemblance to C. variegata, and though the hands strongly resemble those of C. callianassa (which has been confused with C. variegata), this species is absolntely different from those, and is very nearly allied to O. truncata.

44. Charybdis (Gonioneptunus) investigatoris, n. sp.

The lobule of the basal antenna-joint does not touch the front, so that the flagellum stands in the upper part of the orbital hiatus.

Length of carapace nearly five-sixths the breadth.
Carapace little transverse, little convex, the regions indistinct, and the transverse markings extremely indistinct.

Front cut into eight teeth (including the inner orbital angles) of which (1) the middle two are rounded, rather narrow, and distinctly the most prominent (2) the sabmedian are broad and slant outwards, and (3) the outermost pair on either side are narrow and subacute, and form a sort of reduplicated supra-orbital angle. The extent of the frontoorbital border is almost equal to the greatest breadth of the carapace.

Antero-lateral borders little oblique, cut into six acnte teeth with sharp entire edges, of which the first 3 are much larger than the next 2 , while the last is a spine only slightly more prominent than the tooth in front of $i t$.

The posterior border of the dorsum of the carapace, though nearly straight forms a curve with the postero-lateral borders.

The eyes and orbits are large-the major diameter of the orbit being at least half the width of the inter-orbital space-but have no particular dorsal inclination : the inner angle of the lower border of the orbit is not dentiform.

Chelipeds slender, about twice the length of the carapace. Four acute spines, three of which are enlarged, on the anterior border, and none on the posterior border. Wrist with 3 spinules on the outer angle and a very long and acute spine at the inner angle. Hand slender with indistinct costm on the onter surface, with a ridge along the middle of the inner surface, and with four spines on the upper surface-the two on the inner edge of the upper surface being singularly large and acute. Fingers acute, markedly longer than the hand (palm).

Legs long and slender. The merus of the last pair is more than
twice as long as broad and has the usual spine at the far end of the posterior border: there are 1 or 2 spinules on the same border of the propodite of this pair.

The 6th abdominal tergum of the male is truncate-triangular and its line of separation from the preceding segments is indistinct.

A single male specimen, with the carapace 10 millim. long and 12 millim. broad, from off the Ganjam coast, 35 fathoms.

Thalamonyx, A. Milne Edwards.

Thalamonyz, A. Milne Edwards, Nouv. Archiv. du Mus. IX. 1873, p. 168 : Miera, Challenger Brachyura, p. 192.

Resembles Charybdis ($=$ Goniosoma) in all essential characters but differs in the following particulars:-
(1) the front proper (not including the inner sapra-orbital angles) is broader, being very much more than a third the greatest width of the carapace, and is cut into two broad lobes, not including the inner supraorbital angles:
(2) the antero-lateral borders are very little oblique, and are cut into 5 teeth only.

Ortmann, whom I am inclined to follow, regards it as only a subgenus of Charybdis (=Goniosoma). de Man, on the other hand, is inclined to regard it as identical with Thalamita, and there is mach to be said in favour of this view also. The fronto-orbital border, however, is not quite so broad and the antero-lateral borders are not, therefore, so nearly parallel, nor is the posterior part of the carapace so contracted nor the inner supra-orbital angle so broad as in most species of Thalamita. It is a form that excellently well illustrates the real genoric unity of the two supposed geners.

45. Thalamonyx gracilipes, A. M. Edw.

Thalamonyx graeilipes, A. Milne Edwards, Nouv. Arohiv. du Mus. IX. 1878, p. 169, pl. iv. fig. 3.

Thalaunonys danze var. gracilipes, Miers, Challenger Brachyara, p. 192.
Goniosoma (Thalamonyx) danæ, Ortmann, Zool. Jahrb., Syst., VII. 1898-04, p. 83 (part).

Carapace more than two-thirds as long as broad with the regions fairly well defined and the surface granular, some of the granules forming short transverse lines.

Eront sublamellar and prominent, divided into two broad shallow lobes of which the inner angles are a little bit pronounced.

Antero-lateral borders little oblique and little arched, forming an obtuse angle little short of a right-angle with the anterior border, cut into five claw-like teeth of nearly equal size.

The posterior border of the dorsum of the carapace is straight but does not form an angle with the postero-lateral borders.

Orbits large, with no particular dorsal inclination, their major diameter about half the width of the inter-orbital space: the inner angle of the lower border is bluntly acuminate but hardly dentiform.

Chelipeds granular: arm with squamiform markings, with 2 spines on the anterior border and none on the posterior border: wrist costate, with 3 tiny spinules on the outer angle and a strong spine at the inner angle: hands not inflated (in the female at least), carinate, with 3 spines on the upper surface.

Merus of last pair of legs hardly half as long as broad, with the usual spine near the far end of the posterior border.

An egg-laden female in the Indian Museum, from the Andamans, has the carapace 7 millim. long and 9 millim. broad.

Miers and Ortmann regard this species as not distinct from T. danæ, A. M. Edw. (Nouv. Archiv. du Mus. V. 1869, p. 183, pl. vii. figs. 6, 7).

Thalamita, Latreille, A. M. Edw.

Thalamita, Latreille in Cavier Bègne An., Orust. (ed. 2) Vol. IV. p. 33 (footnote) : A. Milne Fidwards, Ann. Sci. Nat., Zool., (4) XIV. 1860, p. 228, and Archiv. du Mus. X. 1861, p. 354: Miers, Challenger Brachyura, p. 198.

Thalamites quadrilatères, Milne Edwards, Hist. Nat. Crust. I. 457.
Carapace hexagonal (but, owing to the straightness of the anterolateral borders, with a quadrilateral cast), broad or very broad, depressed or little convex, usually with well marked transverse ridges.

The extent of the fronto-orbital border is usually little less than the greatest breadth of the carapace: the width of the inter-orbital space is from three-fifths to half the greatest breadth of the carapace : and the width of the true front (i.e. excluding the broad inner supraorbital angles) is from two-fifths to a third the greatest breadth of the carapace.

Front well separated from the broad supra-orbital angles and cut into 2, 4, or 6 lobes or teeth, not including the supra-orbital angles.

Antero-lateral borders hardly oblique, forming almost a right angle with the frontal border, very little arched, cut into 5 teeth (including the onter orbital angle) of which the fourth is often rudimentary and sometimes absent.

Two sutures in the apper border of the orbit: a gap in the lower border, of which border the inner angle is seldom prominent. The antennules fold transversely:

Basal antennal joint having its outer angle enormously produced,
the process being in close contect with the whole length of the inner sapra-orbital angle and completely filling the orbital hiatas, from which', therefore, the antennal flagellum is widely excluded.

Epistome sufficiently long: buccal cavern squarish, broader than long, the efferent branchial channels well defined.

Chelipeds and legs as in Ohasybdis (=Goniosoma). Abdomen as in Neptunus.

Obviously different as the extremes are, the forms included under Charybdis (=Goniosoma) and Thalamita yet constitute an unbroken series, and there is no one character, still less a combination of characters, by which the two groups can be sharply segregated.

Among Indian forms, however, even the most Charybdis-like Thalamites (e.g. T. exetastica and imparimanus) never have more than five distinct teeth on the antero-lateral border (though T. exetastica has a microscope accessory (6th) denticle on the first tooth), and always have a characteristic broadening of the inner sapra-orbital angle; while the most Thalamita-like Charybdes (e.g. C. investigatoris) has the anterolateral border cut into six distinct teeth and has a narrow inner supraorbital angle.

Key to the Indian species of the genus Thalamita.
I. The extreme extent of the basal antenna-joint is far greater than the major diameter of the orbit:-
A. Front out into six lobes of nearly equal sizeexclusive of the broad inner unpra-orbital angles :-

1. Antero-lateral borders of carapace cat into five teeth of nearly equal size :-
i. Transverse ridges of carapace faint : onter surface of palms nearly smooth
T. crenata.
ii. Transverse ridges of carapace very distinct: outer surface of palms costate
T. dance.
2. Antero-lateral borders cat into five teeth, of which the 4th is much the smallest:-
i. Fourth tooth rudimentary : crest of basal antenna-joint with some large spines
T. prymna.
ii. Fourth tooth rudimentary : crest of basal antenna-joint smooth
T. picta.
iii. Fourth tooth small : basal antennajoint granular
T. stimpsoni.
J. II. 10
B. Front cut into two loben-anclusive of the broad inner sapra-orbital angles:-
3. Inner supra-orbital angles arched, mach narrower than either of the frontal lobes:-
i. Frontal Iobes distinct and indepen. dent: hand covered with equamiform markings, its outer surface costate
ii. Median frontal notch indistinot : only the upper part of hand granular, its oater surface smooth or very indistinetly costate :-
a. Teeth of antero-lateral border of carapace acute, the last more prominent than the others
b. Lobea of antero-lateral border square-cut, the last not onlarged
4. Inner supra-orbital angles straight or little arched, not much narrower than either of the frontal lobes:-
i. Crest of besal antenna-joint smooth : Sth tooth of antero-lateral borders of carapace rudimentary.
ii. Creat of basal antenna-joint granular, denticulate, or apinose :-
a. Creat granular or dentate : 4th tooth of antero-lateral borders rudimentary : fingers rather stumpy
.............
b. Crest granular or dentate : 4th tooth small: fingers sharp and as long as the palm
c. Crest spinose: sth tooth somewhat smaller than the others: frontal lobes prominent, with their anglee though rounded strongly pronounced \qquad II. The extreme extent of the basal antenna-joint is equal to, or leas than, the major diameter of the orbit:-
A. Front out into six lobes-eaclusive of the inner anpra-orbital angles :-
5. Antero-lateral borders of the carapace out into five teeth, of which the fourth is rudimentary :-
T. poissonic [? T. sima.]
T. sima [T. arcuata?]
T. chaptali.
T. integra.
T. admeta.
T. savignyio
T. quadrilobata.
i. All the frontal teeth clearly cut and on the same level, the middle pair much narrower than the submedian pair
ii. The middle frontal teeth are not very clearly defined from, are on a lower plane and are nat muoh narrower than, and are somewhat overlapped by the submedian pair
6. Antero-lateral borders cut into five teeth, of which the last two are much smaller than the others: all the frontal teeth olearly ont, the median on a lower plane and hardly narrower than the submedian pair. \qquad
\qquad
B. Front ont into four lobes-esclusive of the inner aupra-orbital angles :-
7. Median lobes of the front narrower than the lateral lobes :-
i. Front sinuous, the median lobes more prominent than the others:'a. Median frontal lobes moderately prominent : antero-lateral borders of carapace cut into five teeth, of which the 4th is the smallest
b. Median frontal lobes conspicuously prominent: anterolateral borders cut into four teeth, of which the 3rd is the smallest
ii. Front perfectly straight: anterolateral borders out into five teeth of which the 4th is the smallest \qquad
8. Median lobes of the front very much broader than the lateral lobes:-
i. Wrist with 8 sharp spinules on the outer surface, hand with granular coster on outer surface, fingers about as long as the palm
ii. Outer surface of wrist and hand nearly smooth, fingers shorter than palm \qquad
C. Front out into two lobes-exclusive of he inner supra-orbital angles :-
9. Front very elightly convex, hardly prominent beyond the supra-orbital angles: carapace markedly transverne, its anterolateral borders cut into five teeth of
T. intormedia.
T. investigatoris.
T. imparimanus.
T. enetastica.
T. semlobata.
T. hanseni.
T. 2000d-masoni.
T. taprobanica.
which the last 2 are very much smaller than the first 3 \qquad
[2. Front convex and markedly prominent beyond the sapra-orbital angles : carapace little transverse, its antero-lateral borders cut into flve teeth of nearly equal size \qquad Thalamonyz gracilipes].

Thalamita prymna (Herbst) Kossmann.

The following names are, in my opinion, all synonymous, namely:T. prymna, T. crenata, T. danos, T. stimpsoni and T. picta. But as it is only occasionly that one encounters specimens that show a combination or confusion of characters I prefer, for convenience, to consider the usually accepted species as distinct. I believe, however, that Kossman's view as to the specific identity of all the Thalamitas with an eight-lobed front combined with a very broad basal antenna-joint, untenable as that opinion appears at first sight, is the correct one.

46. Thalamita crenata (Latr.) Edw.

Thalamita crenata, Latr., Milne Edwards, Hist. Nat. Crust. I. 461 : Gaérin in Cavier, Icon. Règne An. Crast. Texte p. 6 (cor. Thalamita admete Guérin, Icon. Règne An. Crast. pl. i. fig. 4) : Ruippell, 24 Krabben roth. Meer. p. 6, pl. i. fig. 2 : Kranse, Sudafr. Crust. p. 25 : Stimpson, Proc. Ac. Nat. Sci. Philad. 1859, p. 39 : A. Milne Edwards, Arohiv. du Mus. X. 1861 pp. 365, 367 ; Nouv. Archiv. du Mus. IV. 1868, p. 70 and IX. 1873, p. 166 : Heller, SB. AK. Wien, XLIII. 1861, p. 356 and Novara Crust. p. 29 : Martens, Verh. zool.-bot. Ges. Wien XVI. 1866, p. 381 : Hilgendorf, MB. AK. Berl. 1878, p. 800 : Hoffmann in Pollen and van Dam, Fann. Madagasc., Crast. p. 9 : Lenz and Richters, Abh. senck. Ges. Frankf. XII. 1881, p. 422 : Miers, Zool. H. M. S. Alert, pp. 184, 232, 518, 540 ; and Challenger Brachyura p. 199 : Maller, Verh. Ges. Nat. Basel, VIII. 1876, p. 475 : de Man, Journ. Linn. Soc., Zool., XXII. 1887.88 p. 79 ; and in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. 1892, p. 285 ; and Zool. Jahrb., Syst., \&c., VIII. 1894.95 p. 569 : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 218 : Thallwitz, Abh. Zool. Mas. Dresden 1890-91, No. 3, p. 47: G. Pfeffer, Mitt. Natarhist. Mas. Hamburg, VII. 1890, No. 8, p. 7: Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 86; and in Semon's Fornchanger. (Jena. Denk. VIII.) Crust. p. 46.

Thalamita prymna var. crenata, Bichters in Mobias, Meeresf. Maurit. p. 153.
Carapace, length two-thirds the breadth, slightly convex, nearly smooth, crossed transversely by fine faint granular ridges-one, broken only by the cervical groove, between the last spines of the anteroateral borders, one across the middle of the gastric region, and a series of four crescentic ridges (of which however the middle two are usually obsolete) defining the gastric region anteriorly.

Front cut into six rounded lobes of nearly equal size, not inclading
the arched inner supra-orbital angles each of which is as broad as any two of the true frontal lobes.

Antero-lateral borders cut into five clawshaped teeth of nearly equal size, or slightly decreasing in size from before backwards.

Posterior border of dorsal surface of carapace forming a curve with the postero-lateral borders, its length about one-third the greatest breadth of the carapace.

Orbits without any dorsal inclination, their major diameter abont one-fifth the width of the interorbital space: the inner angle of their lower border dentiform and fairly prominent.

The basal antenna-joint is about two-ninths the greatest breadth of the carapace in extent, its orbital prolongation is in nearly the same straight live with its stem, and is traversed by a granular ridge.

Chelipeds a little unequal, the larger one in the male being about $2 \frac{1}{4}$ times the length of the carapace, with a nearly smooth surface. Anterior border of arm with 3 enlarged spines and some granules, posterior border with a few squamiform granules only. Inner angle of wrist stoutly dentiform, outer surface with three teeth imperfectly nnited by costæ. Hand with five spines (most of which are blunt and sometimes become obsolescent), in two rows, on the upper surfacethose of either row being more or less connected by a ridge which is in part granular : there are no other distinct ridges on the hand except a faintish one in the neighbourhood of the immobile finger. The fingers of the larger hand are not quite as long as the somewhat swollen palm, those of the smaller hand are as long as their palm. '

Legs smooth, unarmed except for the usual spine at the far end of the posterior border of the merus of the last pair and for 2 or 3 denticles (which, however, are often absent) on the posterior border of the propodite of the last pair.

The 6th abdominal tergum of the male is broader than long and has gently curved sides.

Large males in the Indian Musenm collection have the carapace about 40 millim. long and about 60 millim. broad.

In the Indian Musenm are 34 specimens, from the Andamans, Mergai, Bombay, Karachi and the Persian Galf (besides specimens from Penang, Singapore, Australia, and Samoa).

47. Thalamita Danæ, Stimpson.

Thalamita crenata, Dana, U. B. Expl. Exp. Crnst. pt. I. p. 282, pl. xvii. figs. 7 ab.

Thalamita Danæ, Stimpnon, Proc. Ao. Nat. Sci. Philad. (1858) 1859, p. 39 : A. Milne Edwards, Archiv. du Mas. X. 1861, pp. 366, 367, pl. xxxvi. fig. 1 : Miers, Cat. Crast. New Zealand, p. 29 : Hilgendorf, MB. Ak. Berl. 1878, p. 800: Richters
in Mobing Meereaf. Marrit. p. 153 : Tenison Woods, P.L.8., N. S. Wales, V. 1880-81, p. 118: Filhol, Crust. New Zealand, Miss. de l'ile Campbell, p. 382: (${ }^{(}$) de Man, Archiv. f. Natarges. LIII. 1887, i. p. 384; and Journ. Linn. Soc., Zool., XXII. 1887-88, p. 78 pl. iv. figs 8, 9 ; and in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. 1892, p. 285; and Notes Leyden Mus. XV. 1893, p. 285; and Zool. Jahrb., Syet., VIII. 1894-95, p. 569.

Differs from T. crenata in the following particulars:-
(1) the carapace is nearly three-fourths as long as broad, its posterior border is nearer two-fifths than a third its greatest breadth, its transverse ridges are very distinct, and the four crescentic ridges near the anterior limit of the gastric region are all prominent, especially the middle two:
(2) the front, though otherwise similar, is more prominent:
(3) a large part of the apper surface of the arm and wrist and at least the dorsal half of the surfaces of the hand are granular,-the granules being more or less squamiform; the ridges that connect the spines of the wrist are distinct; there are 6 or 7 costa on the hand, and the spines of the hand are much sharper:
(4) the 6th abdominal tergum of the male is much broader than long, and its sides are divergent in two-thirds of their extent and then suddenly converge.

In the Indian Museum are 20 specimens from the Andamans and Mergui.
48. Thalamita prymna (Herbst).

Cancer prymna, Herbst, Krabben, III. iii. 41, pl. lvii. fig. 2.
Thalamita prymna, Milne Edwards, Hist. Nat. Crust. I. 461 : Krauss, Sudafr. Crust. p. 25 : De Haan, Faan. Japon. Crast. p. 43, pl. xii. fig. 2: A. Milne Edwards, Archiv. du Mus. X. 1861, pp. 360, 367, and Nouv. Archiv. du Mus. IX. 1878, p. 163': Hess, Archiv. f. Naturges. XXXI. 1865, i. pp. 140, 171 : Hoffmann, in Pollen and van Dam Faan. Madagasc. Crust. p. 9 : Kossmann, Crust. roth. Meer. p. 47 (part): Streets, Bull. U. S. Nat. Mus. VII. 1877, p. 108 : Neumann, Cat. Pod. Crust. Heidelb. Mus. p. 24: de Man, Notes Leyden Mus. II. 1880, p. 180; and Archiv. f. Naturges. LIII. 1887, i. p. 333; and Journ. Linn. Soo. Zool. XXII. 1887-88, p. 75, pl. iv. figs. 5, 6 ; and in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. 1892, p. 285 ; and in Zool. Jahrb., Syst., VIII. 1894.95, p. 567 : Riohters, in Mঠbius Meeresf. Marit. p. 153 : Miers. Ann. Mag. Nat. Hist. (5) V, 1880, p. 238; and Challenger Brachyara, p. 197 : Sluiter, Tijds. Nederl. Ind. XL. 1881, p. 162 : Haswell, CatAustrai. Crust. p. 80: Ortmann, Zool. Jahrb., Syst., VII. 1898, p. 84; and in Semon's Forschanger. (Jena. Denk. VIII.) Crust. p. 46 : Henderson, Trans. Linn. Soc.. Zool., (2) V. 1893, p. 372.

Thalamita crassimana, Dana, Proo. Ac. Nat. Sci. Philad. 1852, p. 85; and U. S. Expl. Exp. Crust. pt. I. p. 284, pl. xvii. figs. $9 a-d$: Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 39.

Differs from T. crenata in the following particulars:-
(l) the carapace is even less convex, and, as in T. Dans, its trans-
verse ridges are very distinct, moreover the mid-gastric ridge is continued, following the curves of the orbits, to the notch between the 1st and 2nd spines of the antero-lateral borders:
(2) the front is somewhat more prominent, the teeth are closer set and the four middle ones are remarkably square-cut :
(3) the teeth of the antero-lateral border end in spines and the fourth tooth is quite rudimentary and may even be altogether absent :
(4) the basal antenna-joint is nearer a fourth than two-ninths the greatest breadth of the carapace in extent, and its orbital prolongation is traversed by a row of spines of which from 1 to 3 are large:
(5) except that they are free from hair and that all the spines are large and much more acnte, the chelipeds are like those of T. Dans, but the granules on the upper surface of the arm are less numerous, and the faint ridge that separates the lower and inner surfaces of the hand in T. Danæ is absent :
(6) the propodite of the last pair of legs has its posterior border serrated throughout:
(7) the 6th abdominal tergam of the male is about as long as broad, and has gently convergent sides.

In the Indian Museum are 35 specimens, from the Andamans, Nicobars, Mergai, and Madras coast (besides 1 from Samoa).

49. Thalamita picta, Stimpeon.

Thalamita picta, Stimpson, Proc. Ac. Nat. Soi. Philad. 1858, p. 39: A. Milne Edwards, Archiv. du Mus. X. 1861, pp. 362, 367, and Nouv. Arohiv. du Mas. IX. 1873, p. 164, pl. iv. fig. 4: Hilgendorf, MB. Ak. Berl. 1878, p. 800: Miers, Zool. H. M. S. Alert, pp. 518, 540 : Oano, Boll. Soc. Nat. Napoli, III. 1889, p. 217.

Differs from T. prymna in the following slight particulars :-
(1) the basal antenna-joint is not so broad and its crest is toothlike, having a smooth entire edge:
(2) the two middle frontal teeth project more than the others.

In the Indian Museam there is a single specimen from the Andamans.

50. Thalamita Stimpsoni, A. M. Edw.

Thalamita stimpsoni, A. Milne Edwards, Arohiv. du Mus. X. 1861, pp. 362, 367, pl. xxxv. fig. 4, and Nouv. Arohiv. du Mus. IX. 1873, p. 164: P Tozretti, Magenta Crust. p. 71, pl v. figa. 4 a-f : Miers, Ann. Mag. Nat. Hist. (5) V. 1880, p. 238 ; and Zool. H. M. S. Alert, pp. 184, 232; and Ohallenger Brachyara, p. 198 : Tenison Woods, P L. 8. N. S. Wales, V. 1880-81, p. 118 : Haswell, Cat. Austral. Crust. p. 80 : Maller, Verh. Nat. Ges. Basel VIII. 1886, p. 475 : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 217 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 85, and in Semon's Forschungar. (Jena. Denk. VIII.) Cruat. p. 46.

Differs from T. prymna in the following slight partioulars :-
(1) the basal antenna-joint has a row of granules, but no spines:
(2) the inner supra-orbital angles are broader:
(3) the 4th spine of the antero-lateral border is usually not so complete a rudiment.

In the Indian Museum is one specimen from the Andamang (besides others from Singapore, Hongkong and Australia.)

This, as Miers has remarked, is one of the forms that supports Kossmann's view as to the identity of all the preceding apecies of Thalamita.

51. Thalamita Ohaptalii, And. et Savign,

Portunus Chaptalii Andoain, Explic. p. 83 Savigny Descr. Egypte Crast. pl. iv. fig. 1.

Thalamita chaptalii, Milne Edwards, Hist. Nat. Orust. I. 460 : A. Milne Fdwarde, Archiv. du Mna, X. 1861, pp. 360, 367: Miers, Zool. H. M. 8. Alert, p. 831 (footnote) : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 216.
? Thalamita sima, Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 878.
Carapace two-thirds as long as broad, pilose, considerably convex, the transverse ridges distinct and disposed as in the preceding species except that there is an additional one ranning across the cardiac region and on to the branchial region on either side, its endings on the branchial regions being the most distinct part of its course.

Front proper forming a broad shallow arch grooved bat not deeply divided in the middle line : the inner supra-orbital angles, which have their anterior border curved, are very mach less wide than the frontal lobes proper.

Antero-lateral borders cut into five teeth, of which the foarth, though considerably smaller, and the fifth, though somewhat smaller than the other three, are quite well developed: the first three teeth are somewhat square-cut, the first being very distinctly so.

The posterior border of the dorsum of the carapace is straight but forms a curve with the postero-lateral borders, its length is slightly more than a third the greatest breadth of the carapace.

Orbits without any particnlar dorsal inclination, their major diameter about one-fourth the width of the interorbital space: the inner angle of the lower border is not pronounced.

The basal antenna-joint is between a fifth and a sixth the greatest breadth of the carapace in extent, and is traversed by a low smooth crest.

Chelipeds about $2 \frac{1}{4}$ times the length of the carapace: usually only two enlarged teeth-and those blunt-on the anterior border of the
arm, the posterior border and part of the upper surface granular : apper surface of wrist granular and costate, inner angle strongly spiniform, the naual spinules on the outer angle obsolescent. Hand rather full, upper surface granular, with the usual two parallel crests and five spines : the spines however are blunt and small, and the anterior two of the outer row are usually obsolete: except for a few indistinct coster the other parts of the hand are smooth : the fingers are slightly longer than the hand, except in the larger cheliped of the adult male.

The merus of the last pair of legs is nearly twice as long as broad and has the usual spine on its posterior border : the same border of the propodite is smooth.

The sisth abdominal tergum of the male is a good deal broader than long and has the sides parallel or slightly divergent in at least two-thirds of their extent.

A small species: the largest male in the Indian Musenm has the carapace 13 millim. long and a little less than 21 millim. in extreme breadth, and there are several egg-laden females a good deal smaller.

147 specimens from the Andamans (one take), besides several from Manritius.

52. Thalamita Poissonii, Andonin et Savign.

Portunus Poissonii, Audoain, Explic. p. 84 Savigny, Desor. Egypt. Orust. pl. iv. fig. 3.

Thalamita Poissonii, de Man, Notes Leyden Mus. IL. 1880, p. 181 : Cano, Boll. Soc. Nat. Napoli, III. 1889, p. 216.

Differs from T. chaptalii in the following partisulars:-
(1) the teeth of the antero-lateral borders are acute, and the last tooth is more spiniform and more prominent than the others:
(2) the posterior border of the propodite of the last pair of legs is armed with 2 or 3 small spinules:
(3) the teeth on the anterior border of the arm are acute.

In the Indian Museum are two specimens from the Persian Gulf. I mach doubt that this is distinot from T. chaptalii.

53. Thalamita sima, Edw.

Thalamita sima, Milne Fdwards, Hist. Nat. Crust. I. 460 : Stimpson, Proc. Aa Nat. Sci. Philad. 1858, p. 89: A. Milne Ifdwards, Arahiv. du Mus. X. 1861, pp. 359, s67; and Nouv. Arohiv. du Mus. IV. 1868, p. 70, and IX. 1873, p. 168 : Miers, Cat. Orast. New Zealand, p. 28 ; and P.Z.S. 1879, pp. 20, 82 ; and Zool. H.M.S. Alert, pp. 184, 231, 518, 539 ; and Ohallenger Brachyura, p. 195 : Kossmann, Beise roth. Meer., Crust. p. 50: Tossetti, Magenta Crust. p. 78, pl. vi. fige. 1 a-e: Hilgendorf, MB. Ak. Berl. 1878. p. 800 : Tenison Woods, P.L.S. N.S. Wales, V. 1880-81, p. 118 : Haswell, Cat. Austral. Crust. p. 80 : Bilhol, Crust. New Zealand, Mise. ile Campbell, p. 388 : Muller, Verh. Nat. Gea. Basel, VIII. 1886, p. 475 : \boldsymbol{P} de Man, Journ. Linn. Soo., J. II. 11

Zool., 1887-88, p. 75, and Zool. Jahrb. Syst. VIII. 1894-95, p. 564 : Oano, Boll. Soo. Nat. Napoli, III. 1889, p. 216 : Walker, Journ. Linn. Soc., Zool., XX. p. 110 : Ortmann, Zool. Jahrb. Syst. VII. 1893-94, p. 84, and in Semon's Forschnngar. (Jena. Denk. VIII) Crast. p. 46 : ? J. B. Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 373.

Portunus (Thalamita) arcuatus, De Hasn, Fann. Jrpon. Crust. p. 43, pl. ii. fig. 2.
Differs from T. Chaptalii in the following particulars:-
(1) the front proper, though arched as a whole, is distinctly divided into two broad shallow lobes the rounded outer angles of which are very distinctly separated from the supra-orbital angles :
(2) the antero-lateral borders are cut into 5 acute teeth of which the last is decidedly the largest and most prominent :
(3) the inner angle of the lower border of the orbit is mure prominent:
(4) the chelipeds are everywhere more granular, their nnder surface especially being covered with transverse squamiform markings: the small spines on the outer surface of the wrist are well marked : the hand is everywhere covered with transverse squamiform markings and is very distinctly 6 or 7-costate, and on its upper surface are 5 distinct spines, of which 4 are large and acute.

In the Indian Museum is a single specimen from the Persian Gulf (besides 12 from Hongkong and Nagasaki).

Our specimens are undoubtedly the Thalamita arcuata of De Haan, which, according to A. Milne Edwards is synonymous with T. sima of Milne Edwards.

54. Thalamita admeta (Herbst) Edw.

Cancer admete, Herbst, Krabben III. iii. 40, pl. Ivii. fig. 1.
Portunus admete Latr., Audouin Fxplic. p. 84, Savigny Desor. Egypt. Crast. pl. iv. fig. 4.

Thalamita admete, Cavier Règne Animal Crust. pl. ix. fig. 2: Milne Fdwarde, Hist. Nat. Crust. I. 459 : Kranse, Sudafr. Orust. p. 24 : Dana, U. 8. Expl. Exp. Crust. pt. I. p. 281, pl. xvii. figs. 5 a-c : Stimpson, Proo. Ac. Nat. Sci. Philad. 1858, p. 89 : A. Milne Edwards, Arohiv. du Mus. X. 1861, pp. 856, 367; and Nouv. Archiv. du Mus. IX. 1873, p. 162 : Heller, SB. Ak. Wien, XLIII. 1861, i. p. 355 : and Crust. Sudl. Earop. p. 79, pl. ii. fig. 17. (fide Guerin); and Novara Crust. p. 28 ; Streets, Bull. U. S. Nat. Mus. VII. 1877, p. 105 : Hilgendorf, MB. Ak. Berl. 1878, p. 799 : Richters in Móbins Meerenf. Manrit. p. 153 : Miers, Zool. H. M. S. Aleat, pp. 183, 230; and Challenger Brachyura, p. 194: Caras, Prod. Faan. Medit. p. 515, (fide Guerin) : de Man, Aphiv. f. Naturgen. LIII. 1887, i. p. 888 ; and in Weber's Zool. Frgebn. Niederl. Ost.-Ind. II. 1898, p. 885 : Thallwitz, Abh. Zool. Mus. Dresden 1890-91, No. 8, p. 46 : Ortmann, Zool. Jahrb., Byst., VII. 1893-94, p. 83; and in Semon's Forschangar. (Jena. Denk. VIII) Crast. p. 46 : J. R. Henderson, Trang. Linn. Soo. Zool. (2) V. 1893, p. 872 : Whitelogge, Mem. Austral. Mns. III. 1897, p. 188.

Thalamita savignyi, A. Milne Edwards, Arohiv. du Mus. X. 1861, pp. 357 and 367, and Nonv. Archiv. da Mas. IX. 1873, p. 163 : Kossmann, Beise roth. Meer. Crast. p. 49: de Man, Notes Leyden Mas. II. 1880, p. 180, and III. 1881, p. 99 ; and Joarn. Linn. Soc. Zool. XXII. 1887-88, p. 73 ; and Zool. Jahrb., Syst. eto., VIII. 1894-95, p. 564 : Cano, Boll. Soc. Nat. Nap. III. 1889, p. 215 : J. R. Henderson, Trans. Linn. Soo., Zool., (2) V. 1893, p. 372: Ortmann in Semon's Forechungar. (Jena. Denk. VIII). Orust. p. 46.

Carapace only about five-ninths to three-fifths as long as broad, pilose, flat, crossed transversely by granular ridges which have the same disposition as in T. danæ, crenata, etc., except that, as in T. chaptalii, sima etc., there is an additional one across the cardiac region and extending, with an interruption, on to either branchial region.

Inter-orbital space divided into four square-cut lobes of nearly equal width : the middle two, which form the front proper, are laminar and are considerably the more prominent: the onter two, which are the broad inner supra-orbital angles, have a straight, or inappreciably curved anterior border.

Antero-lateral borders cut into 5 acute claw-like teeth, of which the 4 th is much smaller than the others and is often rudimentary.

The posterior border of the dorsum of the carapace forms a curve with the postero-lateral borders: its length is a little less than a third the greatest breadth of the carapace.

The orbits have no particular dorsal inclination, their major diameter is about a fifth the width of the inter-orbital space, the inner angle of their lower border is bluntly dentiform.

Basal antenna-joint nearly a fourth the greatest breadth of the carapace in extent: its orbital extension traversed by a serrated crest.

Chelipeds nnequal in the adult male. Three enlarged teeth on the anterior border of the arm : the posterior border granular in its distal half. Upper and outer surface of wrist costate and slightly granular, 2 or 3 spinules at the outer angle, the inner angle strongly spiniform. Hand full and deep, with 5 costor on the apper and outer surfaces: on the upper two costm are altogether 6 spines, of which the distal two are the smallest: the other surfaces of the hand are generally smooth, bat there may be a faint bulge or ridge along the inner surface and an incomplete line of granales along the lower border. Fingers a good deal shorter than the hand (especially in the larger cheliped) rather stampy, and though sharp-pointed showing an inclination to be channelled along the inner surface : the dactylus is decidedly hook-like.

In some individuals the hand, except for the two spinose coster on the apper surface and for traces of two coste on the outer surface, is quite smooth. In others there are only four distinct spines on the haud,-the tivo small ones immediately behind the finger-joint being
obsolescent. In the variety savignyi the hand is not particularly full or deep, and the fingers, which are as long as the hand, are not channelled along the inner sarface.

The merus of the last pair of legs is nearly twice as long as broad and has the usual spine near the far end of the posterior border; the posterior border of the propodite of this pair is serrated throughont.

The 6th abdominal tergam of the male is not much broader than long, its sides are slightly bat gradually convergent.

The carapace of an average male in the Indian Museum is 15 millim. long and 26 millim. broad, but there is a specimen mach larger than this from the "South Seas."

In the Indian Maseum are 45 specimens from the Andamans, Mergui, Palk Straits and Persiau Gulf.

Three varieties of this species are recognizable, but the differences between them are very inconstant and are not, in my opinion, of specific value:-
(1) Thalamita admeta (Herbst). "Der Hand ist gross, auf der aussern Wölbung gekornt."
(2) Thalamita admeta A. M. Edw. "Main portant......sar la face exterue deax crêtes pea marquées et lisses."
(3) Thalamita savignyi A. M. Edw., which differs in the following particulars :-
(a) the transverse ridges of the carapace are in sharper relief: (b) the division between the 2 true frontal lobes is not always broad and deep: (c) the fourth tooth of the antero-lateral borders, though smaller than the others, is not rodimentary : (d) the hand is not particularly fall and deep, and its inner surface is sometimes granular, all the granular coste of the oater surface being well-marked also: (e) the fingers are straighter, are as long as the palm, and have no particular channelling of the inner surface.

55. Thalamita quadrilobata, Miers.

Thalamita quadrilobata, Miers, Zool. H. M. S. "Alert," pp. 518, 539, pl. xlviii. fig. B ; and Challenger Brachyura, p. 194.

Differs from T. admeta in the following particulars:-
(1) the carapace is not quite so broad, its length being about threefifths its breadth :
(2) the two lobes that form the front proper project very much more beyond the two lobes that form the supra-orbital angles and their free edges are so concave and their angles therefore are so pronouncedthat the front (not including the sapra-orbital angles) appears four. lobed :
(3) the fifth tooth of the antero-lateral borders though smaller than the others is by no means a rudiment:
(4) the crest of the basal antenna-joint is armed with a row of 3 large spines like those of T. prymna.
(5) the hands and fingers are like those of the var. savignyi: i.e., the hand is distinctly costate, some of its inner surface is granular, and the fingers are as long as the hand and have no particular channelling of the inner surface.

In the Indian Musenm there is a single specimen from the Andaman Islands : the length of the carapace is 22 millim., its breadth 35 millim.

This form is probably only a variety of T. admeta:

56. Thalamita integra, Dana.

Thalamita integra, Dana, Proc. Ac. Nat. Sci. Philad. VI. 1852, p. 85 and U. S. Expl. Exp. Crust. pt. I. p. 281, pl. xvii. figs. 6 a-d: Stimpson, Proc. Ac. Nat. Soi. Philad., 1858, p. 89 : A. Milne Fdwards, Arohiv. da Mus. X. 1861, pp. 358, 367, and in Maillard's l'ile Réunion, Annere F. p. 2 : Streets, Bull, U. S. Nat. Mus. VII. 1877, p. 107: Hilgendorf, MB. Ak. Berl. 1878, p. 799: Richters in Mobins Meeresf. Maarit. p. 153 : Miers, Zool. H. M. S. Alert, pp. 518, 540, and Challenger Brachyara, p. 195 : de Man, Journ. Linn. Soc., Zool., XXII. 1887-88, p. 74: Cano, Boll. Soc. Nat. Nap. III. 1889, p. 215 : Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 373 : Whitelogge, Mem. Austral. Mus. III. 1897, p. 138.

Closely allied to T. admeta from which it can be recognized by the following characters :-
(l) the carapace is not quite so broad and is distinctly convex : it is bare of tomentum and the transverse ridges are much less distinct, the one that crosses the cardiac region being obsolescent or absent:
(2) the crest of the basal antenna-joint has a sharp entire edge:
(3) the surface of the chelipeds is smooth and polished : the costo of the wrist are worn and in great part obliterated, and the usual 3 spines at the outer angle of this joint are indistinct blunt points : the hand is quite smooth; the inner border of its upper surface is crest-like and bears two teeth, there is a blunt tooth in the usual place in front of the apex of the wrist-joint, and in front of this are one or two blunt tubercles; there may also be a smooth ridge running along the distal two-thirds of the lower border of the hand:
(4) the 6th abdominal tergam of the male is much broader than long.

In the Indian Musenm are two specimens-from Mergai and the Andamans (besides a "Challenger" duplicate from Honolula).
57. Thalamita investigatoris, n. sp.

Carapace about two-thirds as long as broad, covered with a velvet-
like pile, crossed by transverse ridges disposed as in T. sima, admeta, etc.-i.e., there is an additional ridge extending across the cardiac and neighbouring parts of the branchial regions-but they are all faint.

Front cat into six lobes (not including the inner supra-orbital angles) very similar to those of Charybdis (= Goniosoma) callianassa, i.e., the middle two are narrow rounded and more prominent than the others, the next on either side are broad, and the third on either side are very narrow and are subacute.

Antero-lateral borders straight, cut into 5 acute teeth (including, as usual, the outer orbital angles) of which the first 3 are large, the 5 th very small, and the 4th a rudiment.

Posterior border straight, bat forming a curve with the posteror lateral borders, its length hardly more than two-fifths the greatest width of the carapace.

Orbits large, their major diameter more than two-fifths the width of the interorbital space : the inner angle of the lower border not dentiform.

The basal antenna-joint is not equal to the major diameter of the orbit in its extreme extent : its crest is low and denticulated.

Chelipeds markedly unequal in the adult male, their upper surface with close-set vesicular granules : two or three enlarged spines on the anterior border of the arm, none on the posterior border : inner angle of wrist spiniform, two or three minate points on the outer angle: hand not costate, with only two distinct spines, -one being in front of the apex of the wrist-joint, the other, which is the larger, being some way behind the finger joint: [the other spines usually present in Thalamita, if present, are not distinguishable from the general granulation]. Fingers shorter than the hand, especially in the larger cheliped.

First 3 pair of legs long and slender, banded with brown. The merus of the last pair is more than twice as long as broad and has the usual spine on the posterior border: there are also a few spinules on the posterior border of the propodite of this pair.

Sixth abdominal tergum of male a good deal broader than long, its sides parallel in their proximal half and then suddenly converging.

A single male from off Ceylon, 34 fathoms.
A small species, the carapace being 8 millim. long, and 11.5 millim. broad.

58. Thalamita exetastica n. sp.

Closely resembles T. investigatoris, from which it differs in the following particulars :-
(1) the median frontal teeth are on a lower plane than, and are almost as broad as, the submedian teeth :
(2) the teeth of the antero-lateral border gradually decrease in sise from before backwards, the 4th and 5th being extremely small; moreover there is a tiny tooth cut in the base of the first, somewhat after the manner of Goniosoma orientale, but very much smaller :
(3) the carapace is three-quarters as long as broad, and the length of the posterior border is more than half the greatest breadth of the carapace :
(4) all surfaces of the chelipeds, except that part of the apper surface of the arm that is concealed by the carapace, are covered with transverse squamiform markings ; the hand is costate and there are at least 4 distinct spines on its upper surface, two of which along the inner border are particularly large; the fingers are as long as the palm.
(5) the legs are not particularly long and slender; the merus of the last pair is about two-thirds as broad as long, and the posterior border of the propodite is smooth.

A mature female and a young male from off the Malabar coast, 26-31 fms.

A small species, the carapace being 9 millim. long and 12 millim. broad. It is more nearly related to Oharybdis ($=$ Goniosoma) than is any other of these small Thalamites with reduced basal antenna-joint.
59. Thalamita imparimanus, n. sp.

Closely resembles T. investigatoris, from which it differs in the following particulars:-
(l) the transverse ridges of the carapace are prominent:
(2) the median frontal teeth are about as broad as, are on a lower plane than, and are to some extent overlapped by, the submedian teeth :
(3) the bassl antenna-joint is quite Goniosoma-like, its greatest extent being less than half the major diameter of the orbit: its crest is almost indistinguishable:
(4) the chelipeds, though otherwise similar, have the inequality in the male even more marked and there are no points on the outer angle of the wrist that are distinct from the general granulation :
(5) the legs are even longer and slenderer, and the posterior border of the propodite of the last pair is smooth :
(6) the line of janction between the 6th and 7th abdominal terga of the male is concave instead of straight.

Three specimens from off the Ganjam coast, 35 fathoms.
The carapace of the largest is 7 millim. long and 10 millim. broad.

60. Thalamita sexlobata, Miers.

Thalamita seslobata, Miers, Challenger Brachyara, p. 196, ph xvi. fig. 2: Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 378.

Carapace nearly three-fourths as long as broad, flattish, closely pilose, the transverse ridges distinct and disposed as in T. sima, admeta and investigatoris.

Front cat into 4 lobes (not including the supra-orbital angles) of which the middle pair are the narrowest and slightly the most prominent and on a slightly lower plane, while the oater pair are the broudest, being also broader than the arched supra-orbital angles from which they are separated by a distinct notch.

Anterolateral borders out into 5 teeth, of which the first is the largest and the fourth is a mere rudiment, while the fifth is sometimes smaller and sometimes larger than the third.

Posterior border of the usual shape, its length is nearly half the greatest breadth of the carapace.

Orbits large, with a somewhat dorsal inclination, their major diameter is about a third the width of the inter-orbital space: the inner angle of the lower border not dentiform.

Basal antenna-joint about equal to the major diameter of the orbit in extreme extent: its crest is low and either ontire or finely granular.

Chelipeds pilose, covered with transverse squamiform markings. Two enlarged spines on the anterior border of the arm, none on the posterior border. Inner angle of wrist strongly spiniform, three spinules on onter angle. Hand costateg with 4 or 5 (usually 4) spines, of which the most conspicuons are the 2 along the inner border of the upper surface. Fingers of the smaller cheliped rather longer, of the larger cheliped rather shorter, than the hand.

First 3 pair of legs with transverse squamiform markings on the upper surface. In the last pair the merus is nearly twice as long as broad and has the usual spine on the posterior border, and the same border of the propodite is smooth.

Sixth abdominal tergum of male with arched sides, the tergum being broader than long and much broader at its base than at its far end, though the base is not quite the broadest part.

In the Indian Maseum are 15 speoimens, from the Arakan coast, Andamans, and Persian Gulf. The carapace of an egg-laden female is 9 millim. long and 12.5 millim. broad.

61. Thalamita Hanseni, n. sp.

Carapace two-thirds as long as broad, slightly convex, somewhat pilose, crossed by transverse ridges which have the same disposition as in T. admeta, sexlobata etc.

Front deeply eat into 4 lobes (not incloding the inner supra-orbital
angles) of which the middle two are narrow rounded and prominent beyond the outer two which are broad: the latter are well separated from the supra-orbital angles, which are arched and are about the same breadth as the middle frontal lobes.

Antero-lateral borders cut into 4 acute teeth (including the outer orbital angles) of which the first and last are the largest.

Posterior border of dorsum of carapace straight, but forming a curve with the postero-lateral borders, its length is half the greatest width of the carapace.

Orbits large, their major diameter about two-fifths the width of the inter-orbital space, the inner angle of their lower border is not dentiform, and they have no particular dorsal inclination.

Basal antenna-joint less than the major diameter of the orbit in extreme extent, its crest is smooth.

Chelipeds of usaal form : three spines on the anterior border of the arm, none on the posterior border, the distal half of the upper surface with squamiform markings: inner angle of wrist strongly spiniform, three spinales on the onter angle: hand with 5 spines, in the usual position, the two behind the finger-joint the smallest, there are 2 or 3 obscure costm and some indistinct squamiform markings on the outer surface: fingers shorter than the palm, especially in the larger cheliped.

Legs slender : the merns of the last pair is more than twice as long as broad and has the nsual spine on the posterior border, the same border of the propodite of this pair has 2 or 3 spinules.

6th abdominal tergum of male much broader than long, with gradually convergent sides.

Three specimens were dredged by a Danish Expedition off Trincomalee in 2 fathoms, and have been very kindly leut to me for examination by Dr. H. J. Hansen. The carapace of the largest specimen is 6 millim. long and 9 millim. broad.

62. ? Thalamitu intermedia, Miers.

Thalamita intermedia, Miers, Challenger Brachyara, p. 196, pl. xvi. fig. 1: Ortmann, in Semon's Forschunger. (Jena, Denk. VIII.) Crast. p. 46.
"The carapace is broadly transverse, and is covered with a close, whitish pabescence, the transverse ridges which cross its dorsal surface are not more distinct than in I'halamita admete to which species and to Thalamita savignyi, I'halamita intermedia is nearly allied.
"Of the six lobes of the front the median are smallest, and separated by a narrow and rather deep incision, the sabmedian and lateral are subequal, the latter slightly overlapping the former; the lateral lobes project somewhat less than the others.

$$
\text { J. I. } 12
$$

"The five spines of the antero-lateral margin are all well developed, but the three anterior are very slightly larger than the fourth and fifth.
"The basal antennal joint is very distinctly granulated; the maxillipeds present nothing remarkable.
"The chelipeds in the male are subequal, the merus or arm with three spines on its anterior margin, of which the two nearest to the distal extremity are largest; wrist with a strong spine on its inner margin and three small spinules on its onter surface, palm with three or four spines disposed alternately in two series, on its apper surface, and with three granulated ridges on its outer sarface, between which are other granules, as in Thalamita savignyi; the fingers are somewhat shorter than the palm, and irregularly denticulated on their inner margins.
"The ambulatory legs slender and slightly compressed; the fifth legs shaped much as in Thalamita admeta and Thalamita savignyi, with a spine naar the distal end of the inferior margin of the merns-joint, and with the inferior margin of the penultimate joint armed with a very distinct series of small spinules.

Colour (in spirit) pinkish-brown; pubescence whitish."
The above is Miers' description, which I have copied, as I am not perfectly sure of the identity of our specimen. It should be added that the basal antenna-joint is "Goniosoma"-like, its extreme extent being less than the major diameter of the orbit, and that the front is cut perfectly straight.

In the Indian Musenm is a single egg-laden female from off Ceylon 34 fms . The carapace is 5.5 millim. long and 9 millim. in extreme breadth.

63. Thalamita Wood-Masoni, n. sp.

Carapace nearly three-fourths as long as broad, convex, crossed transversely by ridges, which have the same disposition as in T. sima, T. admeta. T. investigatoris, etc., and are all very distinct and straight.

Front cut into 4 rather obscurely marked lobes (not including the inner supra-orbital angles) of which the two middle ones are very broad and the two lateral ones very narrow : the inner supra-orbital angles, which are well arched, are broader than the lateral lobes of the front but much narrower than the median lobes.

Antero-lateral borders nearly straight, cut into 5 sharp teeth, of which the 4 th is rudimentary ard is visible only when the carapace is denuded of its close pile.

Posterior border of dorsum of carapace straight but forming a curve with the postero-lateral borders, its length is rather more than two-fifths the greatest breadth of the carapace.

Orbits without any particular dorsal inclination : their major diameter nearly a third the width of the inter-orbital space: the inner augle of the lower border not dentiform.

Basal antenna-joint abont equal to the major diameter of the orbit in extreme extent, traversed by a low microscopically-granular crest.

Chelipeds rather pilose : the arni has 3 spines on the anterior border, none on the posterior border, the exposed part of its upper surfnce has some squamiform grauules : wrist costate and granular, its inner angle spiniform, 3 sharp spinules on its outer angle : hand with numerous granular costm, and with 5 sharp and very distinct spines in the usual position : flugers about as long as the hand in the smaller cheliped, shorter than the hand in the larger cheliped.

Merus of last pair of legs slender, more than twice as long as broad, with the usual spine on the posterior border: the posterior border of the propodite of the same pair has some spinules.

The 6th abdominal tergum of the male is a good deal broader than long, its sides are suddenly couvergent near the distal end and its distal border is concave.

In the Iudian Museom is a single specimen from the Andamans. Among the specimens kindly lent me for examination by Dr. H. J. Hansen of the Copenhagen Museum is a male from Paumban (Palk Str.).

A small species : carapace 9 millim. long, $12 \cdot 5$ millim. broad.
Thalamita Wood-Masoni var. taprobanica.
Differs from T. Wood-Masoni, type, much as T. admeta differs from var. T. savignyi:-
(1) the frontal lobes are deeper cut:
(2) the sculpture of the chelipeds is much less distinct: the squamiform markings on the arm wrist and hand, and the coste of the wrist and hand are much worn ; the spinules on the oater angle of the wrist are blunt and obsolescent; and the spines on the upper surface of the hand are small and blunt-the anterior two of the outer row being smaller and blunter than the others; the fingers are much shorter.

In the Indian Museum is a single specimen from Ceylon.

64. I'halamita oculea n. sp.

Carapace rather more than two-thirds as long as broad, closely and densely pilose. When denuded, the transverse sidges are prominent and more numerous than in any other Indian species, because besides the ridges found in T. danæ etc., and besides the additional ridge across the cardiac and neighbouring part of the branchial regions found in
T. sima, admeta etc., there is-behind all-another short ridge or linear tubercle on either branchial region.

Front proper straight, obscurely divided into 2 lobes (not including the inner sapra-orbital angles) by a notch that needs looking for with a lens. The inner sapra-orbital angles are arched and their breadth is not half that of either of the true frontal lobes.

Antero-lateral borders nearly straight, cat into 5 teeth, of which the first is the largest and the last two (which are co-equal) are very much smaller than any of the others.

Posterior border of dorsum of carapace straight, but forming a curve with the postero-lateral borders; its length is rather more than half the greatest breadth of the carapace.

Orbits with a distinntly dorsal inclination, large-their major diameter being little less than half the width of the inter-orbital spacethe fissures in the upper border obscure, the inner angle of the lower border not dentiform.

Bassl antenna-joint Goniosoma-like, its extreme extent being much less than the major diameter of the orbit, its crest low and smooth.

Chelipeds pilose, covered with transverse squamiform markings: 2 enlarged teeth on the anterior border of the arm, none on the posterior border: inner angle of wrist strongly spiniform, 2 or 3 inconspicuous denticles on the outer angle: hand costate, with 4 or 5 (usually 4) spines, of which only three (uamely, the one in front of the apez of the wrist-joint and the two along the inner border of the upper surface) are visible to ordinary observation, the other 1 or 2 being lost in the general squamiform granulation.

Legs pilose, the first 3 pair with squamiform sculpture on the upper surface : in the last pair the merus is nearly twice as long as broad, and has the usual spine on its posterior border, and the propodite has a smooth posterior border.

Sternam with namerous transverse grooves-a sort of scatiform sculpture-most conspicuons in the male.

6th abdominal tergam of male a good deal broader than long, with gradually convergent sides.

7 specimens from off Ceylon, 28-34 fms., 1 from off Malabar coast 26-31 fms., 3 from the Andaman Sea.

A small species: the carapace of the largest egg-laden female is 9 millim. long and 13 millim. broad.

Alliance III. Podophthalmoida.
 Podophthalyus, Lamk.

Podophthalmus, Lamarok, Syet. Anim. sans. Vort. V. p. 168, and Hist. Nat.

Anim. sans. Vertebr. V. p. 255 : Latreille, Hist. Nat. Orust. VI. p. 53 : Leach, Zool. Miscell. II. p. 147 : Desmarest, Consid. Gen. Crust. p. 99 : Milne Fdwards, Hist. Nat. Crust. I. 465 : De Haan, Fran. Japon. Crust. p. 10: A. Milne Edwards, Ann. Sci. Nat., Zool., (4) XIV, 1860, pp. 288, 228, and Arohiv. du Mus. X. 1861, p. 419 : Miers, Challenger Brachyara, p. 207.

Carapace extremely broad. Its antero-lateral borders are almost transverse in the greater part of their extent and then turn obliquely backwards to end in a large spine; they are deeply grooved along their whole extent to receive the enormonsly elongate eye-stalks. The groove is an extension of the true orbit, which also encroaches on the dorsal surface of the front, so that the true front comes to lie beneath the roots of the eye-stalks, cut off from the rest of the carapace except for a narrow isthmus left between the eye-stalks.

The true front, which thas lies below the eye-stalks but in its normal relation to the antennules and antennm, is extremely narrow.

Close behind the spine that terminates the antero-lateral border is another, smaller, spine.

The eyes are borne on slender basal stalks of peculiar length : the orbits, as already explainod, occupy the whole extent of the anterolateral border, even extending on to the lateral epibranchial spine. The antennules are lodged in fossem beneath the front, into which they are not completely retractile.

The antennæ are also in their normal position in the wide orbital hiatus: the basal joint is short, the flagellum long and slender.

The epistome though short, or even linear, and though encroached upon by the external maxillipeds, is well defined. Baccal cavern squarish broader than long: efferent branchial channels ill defined.

Chelipeds legs and abdomen as Noptunus.
As M. A. Milne Edwards has remarked Podophthalmus is merely asa abnormal Neptunus.

65. Podophthalmus nacreus, n. sp.

Carapace broadly heragonal, approaching the oblong-quadrate, its length just over half its breadth (lateral spines included) its regions fairly well delimited, its surface finely granular.

Front proper (that is, the piece almost out off from the rest of the carapace by the encroachment of the eye-stalks) horizontal, distinctly bilobed, its breadth about a sixth that of the carapace (spines included).

Antero-lateral borders distinctly arched, or angularly bent, the lower edge of the groove for the eye-stalks very prominent and forming almost a quadrant of a broad ellipse, the lateral epibranchial spine short-its length about half the width of the front.

Postero-lateral borders not at all strongly convergent, the spine at their anterior end sharply carinate. Posterior border straight, its length is half the greatest width of the carapace (spines included).

Eyes, with the eye-stalks, well over half the greatest breadth of the carapace (spines included).

The maxillipeds in repose almost close the month, a narrow space being left between them : the antero-external angle of the merus produced and lobe-like. Epistome alnost linear.

Chelipeds in the male nearly three times the greatest length of the carapace : anterior border of arm with a row of spines the distal 2 of which are enlarged, posterior border with 2 enlarged spines in its distal half: inner ancle of wrist strongly spiniform, a spine followed by a carina along the outer surface of wrist: hand very sharply carinated on the upper and outer surfaces, armed with 2 spines-one in front of the apex of the wrist-joint, the other behind the fingerjoint: dactylus very little shorter than the palm.

First 3 pair of legs sleuder: a short spine on the posterior border of the merus of the 4 th pair.

2nd and 3rd abdominal terga carinate in both sexes: 6th tergum in the male much broader than long, with converging sides.

Colours in spirit yellowish; the edges of the carapace, the crests and spines of the chelipeds, aud the carinæ of the abdomen have mach the same nacreous sheen as in Neptunus argentatus.

In the Indian Museum are 3 specimens from the Andamans, and one from the Gulf of Martaban 53 fms. The carapace of the largest specimen is 12 millim. long and 23 millim. broad.

This species in several respects approaches Euphylax. It differs from Podophthalums vigil in the following particulars:-
(1) the carapace is almost oblong-quadrate, its antero-lateral borders are curved or angularly bent, its surface is granular and its regions better defined :
(2) the buccal cavern is squarer and is more nearly closed by the external maxillipeds, the antero-external angle of the merus of which is produced to form a lobule : the epistome is linear :
(3) the front is horizontal and bilobed:
(4) the lateral epibrauchial spine is much shorter:
(5) the hand is very sharply carinated and the fingers are nearly as long as the palm.

[^4]Cyclinea and Corystoidea (part)Dana, U. S. Expl. Exp. Crast. pt. I. pp. 294 and 296 : Miers, Challenger Brachyura, pp. 208 and 209.

Cancrini (exc. Carcinus) and Xanthini (Thiidæ only) Ortmann, Zool. Jahrb. Syst. VII. 1893.94, pp. 421 and 428.

Carapace moderately convex, either broadly transversely-oval (as in the Cancrinæ) or elongate-oval or subcircular or (rarely) somewhat hexagonal, the regions rarely strongly defined and rarely areolated.

Front not very broad, commonly cut into 3 teeth, which are sometimes prominent: [sometimes (Thiinss) the front is subentire or bilobed; in Acanthocyclus it is triangular and pointed.]

The antennales always fold longitudinally.
Antennal flagella usually long, coarse, and setaceous [absent in Acanthocyclus, short and slender in Kraussia].

Epistome usually sunken, always more or less overlapped by the external maxillipeds which are often somewhat elongate.

Lege gressorial.

Sternum narrow.
I propose to divide the Cancridæ into the following five subfami-lies:-

Subfamily I. Cancrins. Carapace broadly transverse, oval, the antero-lateral borders cut into many teeth or packers, the regions either not defined or fairly well defined and areolated. Front cut into 3 teeth. Buccal orifice about square. Epistome bat slightly sunken and slightly overlapped by the external maxillipeds, which completely close the mouth and have the merus not elongate. Basal antenna-joint fixed.

Constituent genera :-

1. Cancer, Lamk., Leach, A. Milne Edwards Nouv. Archiv. du Mus. I. 1865, p. 185.
2. Metacarcinus, A. Milne Edwards, Nouv. Archiv. du Mus. I. 1865, p. 201.
3. Trichocarcinus, Miers, P.Z.S. 1879, p. 34 (=Trichocera, De Haan, Faun. Japon. Crust. p. 16).

Subfamily II. Pirimelinse. Carapace somewhat hexagonal, not transverse, regions very well defined and areolated, antero-lateral borders cat into 5 teeth. Front cut into 3 teeth. Buccal orifice moderately elongate. Epistome a good deal sunken and much overlapped by the external maxillipeds which completely close the mouth. Basal antennajoint fixed.

Includes a single genus, uamely

* Pirimela, Leach, Milne Edwards, Hist. Nat. Crust. I. 423.

Subfamily IIJ. Thiines. Carapace subcircular the regions not defined, antero-lateral borders entire or denticulate. Front entire, or cut into two lobes which may again be . subdivided into two lobales. Buccal orifice moderately elongate, the external maxillipeds, which completely cover the month, encroach somewhat on the very short epistome. Basal antenna-joint fixed.

Constituent genera :-

1. Thia, Leach : Milne Edwards, Hist. Nat. Crust. II. 143.
2. Kraussia, Dana.

Subfamily IV. Atelecycling. Carapace subcircular, often a little longer than broad, the regions nsually fairly or well defined, not much areolated, antero-lateral borders usually with teeth. Front usually cat into 3 (sometimes 2 or 4) teeth which are often prominent. Buccal orifice elongate, not completely covered by the external maxillipeds which are elougate-especially as to their merus-and overlap or completely conceal the sunken epistome. Basal antenna-joint either fixed or slightly movable.

Constituent genera :-

1. Atelecyclus, Milne Edwards, Hist. Nat. Crust. II. 141.
2. Erimacrus, Benedict Proc. U. S. Nat. Mus. XV. 1892, p. 229 (= Podacanthus, Brandt, Bull. Phys. Math. Acad. Petersb. VII. 1849, p. 180).
3. Hypopeltarium, Miers, Challenger Brachyara, p. 210 ($=$ Pebtarion, Lacas in Jacquinot's Voy. Astrolabe an Pol. Sud., Zool. III. Crust. p. 80).
4. Pliosoma, Stimpson, Ann. Lyc. Nat. Hist. New York, VII. 1862, p. 227.
5. Telmessus, White Ann. Mag. Nat. Hist. XVII. 1846, p. 497 and Samarang Crust. p. 14 (= Platycorystes, Brandt, Bull. Phys. Math. Acad. Petersb. VII. 1848, p. 179 : = Oheiragonus, Latr.).
6. Trachycarcinus, Faxon.
7. *Trichopeltarium, A. Milne Edwards.

Subfamily V. Acanthocyclinæ, carapace subcircular. Front ending in a triangular point. Epistome short sunken, completely concealed by the external maxillipeds which also completely cover the buccal orifice. Antennal flagella absent. For the single genus

Acanthocyclus, Milne Edwards and Lucas, Yoy. Amer. Merid. Crust. p. 29.
[? Subfamily Trichiinæ for Trichia De Haan, Faun. Japon. Crust. p. 109, which may however be the type of a distinct family.]

In the foregoing lists the genera known to me by antopsy are marked with an asterisk and Indian genera are printed in Roman type. I have made no attempt to split the Subfamilies into "alliances" as I have not sufficient material at my disposal for such a parpose.

Subfamily THIIN な.
Kradssia, Dana.
Kraussia, Dana, Silliman's Amer. Journ. Sci. and Arts. XIII. 1852, p. 120, and U. 8. Expl. Exp. Crust. pt. I. p. 300.

Carapace not much broader than long, not concealing the first three abdominal terga even in the male, subcircular but with the antero-lateral borders much longer than the postero-lateral, and the latter rather strongly convergent and slightly concave: the regions not defined.

Front well separated from and prominent beyond the inner sapraorbital angles, almost horizontal, cut into two lobes which may, or may not, be again divided into two lobules.

The antennules fold alongside their basal joint, much nearer the longitudinal than the transverse.

The basal antenna-joint touches the front and occupies all the space between the antennulary pits and the orbit: the flagellum, which is short and slender, stands in the orbital hiatus.

Buccal cavern squarish, a little elongate: the external maxil-lipeds-of which the merus is not elougate-slightly overlap the epistome, which though short and sauken is well enough defined. No ridges on the palate to define the efferent branchial channels.

Chelipeds massive, short and stumpy with particularly stumpy fingers.

Legs short and stont, ending in blade-like dactyli.
The abdomen of the male consists of 5 segments, the 3rd-5th terga being fused.

Sternim narrow.
Key to the Indian species of Kraussia.
I. Carapace somewhat broad, its frontal and antero-lateral borders
conspicnonsly dentate : front bilobed K. integra.
II. Carapace somewhat elongate, its frontal and antero-lateral borders minately denticulate : front four lobed K. nitida.

1. Kraussia integra (De Haan).

Cancer (Xantho) integer, De Haan, Fann. Japon. Crust. p. 66, pl. xviii. fig. 6. J. II. 13
? Kraussia rastripes, F. Müller, Verh. Ges. Basel. VIII. 1886, pp. 475, 480, pl. iv. fig. 5.

Carapace about four-fifths as long as broad, little convex, smooth to the naked eje, but with fine transverse subsquamiform pitting under the lens.

Frontal, orbital, and antero-lateral borders elegantly uniformly and conspicuously denticulate, and fringed (except the infra-orbital border) with long stiff silky hairs. Similar hairs fringe the legs, the arm and the inner angle of the wrist, and the anterior edge of the external maxillipeds.

Front cut into two broad lobes, each of which shows a very slight tendency to be divided into two lobules. Dorsal surface of roof of orbit without any marked grooves.

Chelipeds about as long as the carapace, the hand the most massive joint: the fingers are very short and stampy, the dactylus closing very obliquely on a short straight immobile finger that is little better than a tubercle. On the outer surface of the hand is some fine subsquatmiform sculptare: on the upper surface of the finger are some bluntly-dentiform granules in rows, and there are some granules near the inner angle of the wrist.

Legs stoutish, slightly shorter and much less massive than the chelipeds: the dorsad surfaces of the propodites and dactyli-as of the carpopodites also in their distal end-are abundantly and elegantly denticulate. All the dactyli are blade-like.

In the Indian Maseum are two specimens from the Andamans.
2. Kraussia nitida, Stimpson.

Kraussia nitida, Stimpson. Proc. Ac. Nat. Sci. Philad. 1858, p. 40 : Miers, Zool. H. M. B. Alert, pp. 184, 235 : J. R. Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 379, pl. $\mathbf{x x z v i i i}$ fig. 9.

Differs from K. integra in the following particulars:-
(1) The length of the carapace is more than four-fifths the breadth, and the carapace is more convex from side to side : .
(2) The frontal, orbital, and antero-lateral borders are minutely, instead of conspicuonsly, denticulate, and the hairs that fringe them are more scanty :
(3) The front is more prominent and is cut into 2 lobes each of which is deeply cat into 2 lobules :
(4) There are two distinct though fine grooves in the roof of the orbit, one of which passes far back on to the carapace and imitates a cervical groove :
(5) The chelipeds are quite smooth except for a few granules at the inner angle of the wrist :
(6) The dactyli of the legs are more broadly blade-like, and the last three joints of the legs are without any denticulations or have only a trace of them on the propodite.

In the Indian Museum are two specimens one from the Andamans, 20 fms., the other from off the Ganjam coast, 9 fms.

Subfamily ATELECYCLINA.

Tbichopbltariti, A. M. Edw.
Trichopeltarium, A. Milne Fdwards, Ball. Mus. Comp. Zool. VIII. 1880, p. 19.
Carapace oval or sabcircular, as long as or longer than broad, strongly convex, its borders spinate.

Front prominent, not very broad, cut into 3 sharp teeth or spines.
Orbits shallow, defined by spines with considerable gaps between them : inner saborbital angle spiniform. Eye-stalks slender.

The antennules fold longitudinally. The basal antenna-joint is short and subcylindrical ; the flagellum coarse, stout, setaceous.

Epistome of fair length, fairly well defined, sunken, and overlapped by the external maxillipeds. Buccal orifice square-cut, longer than broad, not completely covered by the external maxillipeds, which are somewhat elongate and have the merus a little narrower than the ischium. Efferent branchial regions defined by ridges which do not reach up to the epistome.

Chelipeds massive and nnequal in the male.
Legs stout, hairy, more or less spiny, ending in stont styliform dactyli : they are longer and are not much less massive than the female chelipeds.

3. ? Trichopeltarium ovale, Anderson.

? Trichopeltarium ovale, Anderson, J.A.S.B. Vol. LXV. pt. 2. 1896, p. 103 ; Ill. Zool. Investigator, Crust. pl. xxv. figa. Arsa: Alcook, Iuveatigator Deep Sea Brachyara, p. 57.

Carapace egg-shaped, covered with spines which on its dorsal surface are bifid or multitid, and with short stiff but not very conspicuons hairs. The regions are well defined by coarse grooves: the gastric is divided into three sab-regions, and the cardiac into two, and on either side of the cardiac region a semilunar area is marked off on the branchial region.

The front, which is out into three prongs, is about one-seventh the greatest breadth of the carapace, and is separated from the orbit by a deep notch.

The orbits are very incomplete: they are formed by a prominent
preocular tooth (parallel with, but less prominent than, the front), below which at the inner suborbital angle is an almost equally prominent coarse spine : there are also two other teeth-one at the external orbital angle, and the other between this and the preocular toothhardly distinguishable from the ordinary spines of the carapace. The eyestalks which are slender, tapering, and of good length, do not nearly fill the shallow orbital cavity.

The antennules fold longitudinally in fosso, beneath the front: their basal joint is large. The antennæ arise almost in the same transverse line with the antennules: their basal joint forms a large part of the floor of the orbit.

The epistome is sunk below (i.e. is really arched much above) the plane of the external maxillipeds. The efferent branchial channels are defined by an incomplete ridge, and are patulous. The external maxillipeds are slender, and leave the mandibles exposed between them : the merus is obovate and narrower than the ischuim, the palp is coarse.

The chelipeds and legs are spiny and bristly, the spines in the case of the legs being well pronounced only on the dorsal surface of the meropodites.

In the female the chelipeds are shorter and not much stouter than the logs and are about as long as the carapace.

The legs are little unequal in leugth, the first pair which are slightly the longest being hardly half as long again as the carapace: they all end in long, stout, cylindrical, sharply styliform dactyli.

The abdomen of the female is seven-jointed and covered with coarse hairs: the first two segments are broader, and on them the spines decrease in size to the seventh segment which is smooth.

The colour in life is recorded by Dr. A. R. Anderson as pale bluish yellow.

Length of carapace and rostrum 64 millim., breadth 55.5 millim., depth 35 millim.

A single female from off the west coast of Ceylon $180-217 \mathrm{fms}$, on a foul bottom of broken coral.

Trachycarcinus, Faxon.

Trachycarcinus, Faxon, Bull. Mus. Comp. Zool. XXIV. 1893, p. 156, and Mem. Mus. Comp. Zool. XVIII. 1895, p. 25 : Alcock, Investigator Deep Sea Brachyura, p. 68.
"Carapace pentagonal, moderately convex, lateral margins long, nearly straight, toothed. Front narrow, produced, three-toothed. Orbits large with forward aspect, imperfect, with two hiatuses above
one below, and one at the inner angle; lower wall formed chiefly by the earapace. Anterior margin of buccal cavity not distinctly defined, epistome short, ridges of the endostome developed. Sternum long and rather narrow. Abdomen of male narrow and five-jointed, the third, fourth, and fifth segments consolidated. Eye-stalks very small, retractile within the orbits. Antennules lougitadinally folded. The antonno lie in the inner hiatas of the orbit; their basal segment is bat slightly enlarged, not filling the hiatus at the inner angle of the orbit nor attaining to the front, subcylindrical, narmed, imperfectly fased with the curapace ; the second segment is longer and slenderer than the first, the third segment about equal to the second in length, but slenderer; all these segments are furnished with long and coarse setw; the whole antenna is less than one-half as long as the carapace. The ischium of the onter maxillipeds is produced at its antero-internal angle; the merns of the same appendages is rounded at the antero-external angle, obliquely traucated bnt not emarginated at the antero-internal angle, where it articulates with the following segment. Legs of moderate length. Right and left chelipeds very unequally developed in the male. Dactyli of ambulatory legs styliform, straight slender, longer than the penultimate segments."

4. Trachycarcinus glaucus, Alcock and Anderson,

Trachycarcinus glaucus, Aloock and Anderson, Ann. Mag. Nat. Hist. Jan. 1899, p. 8 : Alcock, Investigator Deep Sea Brachyura, p. 59, pl. ii. fig. 2.

Carapace irregularly pentagonal, its surface coated with short.stiff clab-shaped hairs; the regions well defined, rather tumid, mach sabdivided into tumid lobules, of which the converities are capped by clusters of large conical granules and the general surface also is studded especially in the young with similar granules.

Front narrow, horizontal, prominent, deeply cleft into three prongs of nearly equal size.

Antero-lateral borders half as long again as the posteru-lateral, armed with three stont pinnulate spines not including the onter orbital angle : postero-lateral borders entire, posterior border finely beaded.

Upper orbital wall deeply cleft into three pinnulate teeth, lower orbital border deeply concave, its inner angle strongly spiniform. Eye-stalks slender, rather long: the eyes, which are more ventral than terminal, are dull and faintly pigmented (as in many species of Munidopsis), and are non-facetted.

Antennal flagella short, extremely slender, not hairy.
Chelipeds remarkably anequal in the male, equal in the female.
The smaller cheliped of the male and both chelipeds of the female
are about as long as the carapace, and are coated, almost to the fingertips, with stiff club-shaped hairs, which are short except along the upper border of the wrist and hand and of the basal part of the finger, where they are long : beneath the hairs are some scattered granules, and along the apper border of the arm, wrist and hand are some denticles : the inner angle of the wrist is strongly spiniform, and the far end of the upper border of the hand is dentiform.

The larger cheliped of the male is about twice the length of the carapace, about half its length being formed by the hand and fingers: the greatest breadth of the hand is about half the length of the carapace. It is almost smooth, the upper border of the arm and hand, and the inner border and upper and outer surfaces of the wrist, alone being furnished with denticles and hairs: the inner angle of the wrist is spiniform.

The legs are covered with short stiff club-shnped hairs which are rather more thick-set on the anterior borders and on the dactyli than elsewhere. The second and third pair, which are rather longer than the first and last pair are somewhat less than $1 \frac{1}{3}$ times the length of the carapace. All the dactyli end in a little claw.

The abdomen of the male consists of seven distinct segments, but the 3 rd, 4 th and 5 th move together.

In life the animal is covered with a coat of mad held togetier by the hairs above described, the only bare parts being the hand and fingers and part of the arm of the larger cheliped of the male.

The colours in life are described by Dr. A. R. Anderson, as "white with a bluish tinge, eyes with a slight reddish opalescence." In spirit the bluish tinge is fainter, the ejes are a pale milky yellow-ochre, and the large hand is ivory-white.

The dimensions of the largest male are as follows :-
Length of carapace $18 \cdot 5$ millim. Breadth of carapace 14.5 " Combined length of hand and fingers, along lower border... 14.75 " Combined length of basal joints, arm and wrist, along
upper border 15 ,,
Fifteen specimens were dredged off the Travancore coast at a depth of 430 fms. The bottom consisted chiefly of coral (living and dead).

Several of the specimens were egg-laden females. The eggs are comparatively few in number and are large, their diameter being about 1.3 millim.

This species is very like Trachycarcinus corallinus, Faxon, which was dredged by the "Albatross" off Panama and the Pacific coast of Mexico, at depths of 546-695 fathoms.

It differs from that species in the following particulars :-
The carapace is more granular, and its lobules are capped by blunt conical spinules, not smooth tabercles ; and its posterior border is finely and irregularly beaded, not dentate.

The front is deeply cut into 3 spines or prongs of almost equal size, not into 3 teeth of which the middle one is larger than the others.

The eyes, though very pale, are distinctly pigmented, not devoid of pigment.

The inner angle of the wrist of the smaller cheliped is very strongly spiniform, not unarmed.

As Mr. Faxon says, Trachycarcinus is very closely related to Trichopeltarium; in fact, the relation is so close as to make the separation of the two forms almost doubtful.

Family CORYSTID.E.

Corystiens (part) Milne Edwarda, Hist. Nat. Orust. II. 139.
Corystoidea-Corystidæ (part) Dana, U. 8. Expl. Exp. Crust. pt. I, p. 296.
Corystoidea (part) Miers, Challenger Brachyura, p. 210.
Majoidea-Corystoidea, Ortmann, Zool. Jahrb., Syst., VII. 1893, pp. 26, 28.
Oayrhyncha-Corystidæ, Ortmann, in Bronn's Thier Reich. V. ii. (Arthropoda), p. 1166.

Carapace mach longer than broad, oval, convex from side to side, the regions sometimes fairly well defined, sometimes not, never areolated.

Front fairly prominent, cat into 2 or 3 teeth.
The autennules are small and fold longitudinally.
The antennæ, when present and perfect, asually have the flagellum long coarse and setaceous.

There is no epistome, and the external maxillipeds, which are elongate and sometimes have a slight pediform cast, extend almost up to the antennules. The buccal orifice is elongate and is square cut with the anterior angles rounded and slightly convergent.

Legs either all gressorial or the last pair modified for swimming.
The following geuera compose this family :-
I. Genera in which the legs are not natatory:-

1. Bellia, Milne Edwards, Ann. Sci. Nat. (3) IX. 1848, p. 192.
2. ${ }^{*}$ Corystes, Latr., Milne Edwards, Hist. Nat. Crust. II. 146.
3. Corystoides, Edwards and Lacas, Voy. Amer. Merid., Crust. p. 31.
4. Gomeza, Gray, Zool. Miscell. p. 39, Miers, Challenger Brachyura, p. 212 ($=$ Oeidia, De Hean, Fann. Japon. Crust. p. 15).
5. Podocatactes, Ortmann, Zool. Jahrb., Syst., V1I. 1893, p. 29.

1I. Genera in which the legs are more or less natatory:-
6. Nautilocorystes, Milue Edwards, Hist. Nat. Crust. II. 149 ($=$ Dicera, De Haan, Faan. Japon. Crust. p. 14).
7. Pseudocorystes, Milne Edwards, Hist. Nat. Crust. II. 149.

Nattilocorystes, Edw.

Nautilocorystes, Milne Edwards, Hist. Nat. Crust. II. 149.
Dicera, De Haan, Faun. Japon. Crust. p. 14.
Carapace elongate-obovate, slightly convex from side to side, smooth without distinction of regions, the antero-lateral borders longer than the postero-lateral and armed with five teeth.

Front moderately broad, horizontal, moderately prominent, cut into 2 or 3 teeth.

The antennules fold longitudinally. Antennæ coarse, setaceous, the basal joint occupying the orbital hiatus, the flagellum about half as long as the carapace.

Buccal orifice elongate subquadrate, not defined anteriorly : external maxillipeds elongate, the merus narrower than the ischium and bearing the flagellum at its summit. Even in repose the external maxillipeds partly conceal the antennules.

Chelipeds short, much more massive than the legs.
Legs compressed, the first 3 pair end in a lanceolate dactylus the last pair end in a blade-like swimming dactylus.

1. Nautilocorystes investigatoris, n. sp.

Carapace elongate-obovate covered with a multitude of fine brown longitudinal lines, smooth.

Front about a third the greatest breadth of the carapace, slightly prominent beyond the orbits, cat into 3 teeth.

Antero-lateral borders cat into 5 irregularly disposed teeth inclad. ing the outer orbital angle.

Inver angle of lower border of orbit acutely dentiform, prominent beyond the level of the front.

Chelipeds equal, about as long as the carapace: a spine at the inner angle of the wrist and two spines on the upper surface of the hand-one being in front of the apex of the wrist-joint the other behind the finger-joint.

Legs compressed, much slenderer but not much shorter than the chelipeds, hairy : the dactylus of the last pair is broadly blade-shaped as in N. ocellatus.

In the Indian Musenm are 2 females-one with eggo-from the Vizagapatam coast $15-17$ fms. The carapace is 6.25 millim. long and 5.5 millim. broad.

This species differs from N. ocellatus in the following particulars:the front is 3 -spined, the inner saborbital angle is extremely prominent and spiniform, there are two spines on the hand, and the coloarmarkings are fine longitudinal lines.

－6881

＇xamald xavd＇LS＇zisuoos＇orxvisy

: VLL』OTVO

＇xyvisyoヨ
18 ashias
＇668I－＇＇ON＇II 子uBd IIIAXI＇IO ＇TVDNAG A0 XLIIJOS JILVISV ghl ao

TVNYOOP

CONTENTS.

Notes on the Fauna of the Gilgit District.-By Capt. A. H. McMahon, F.Z.S., F.G.S., F.R.G.S., C.S.I., C.I.E.
Note on Hume's Bush-quail (Microperdix manipurensis),-By Capt. H. S. Wood, I.M.S.,
Natural History Notes from the Royal Indian Marine Survey Ship 'Investigator,' Commander T. H. Heming, R.N., Commanding,Series III. No. 3. On some Notable New and Rare Species of Crustacea.-By A. Alcocs, M.B., C.M.Z.S., Superintendent of the Indian Museum. (With Plate I)
On a new species of Bhimraj (Dissemurus), with some observations on the so-called family Dicruridæ.-By F. FINN, B.A., F.Z.S., Deputy Superintendent of the Indian Museum. (With Plate II)

JOURNAL

OF THE

ASIATIC SOCIETY OF BENGAI

Norian.

Foreign Societies who favour the Asiatic Society of Bengal with their publications are informed that they may be sent either to the address of the Society at Calcutta, or to the Agents of the Society in London, Messrs. Luzac \& Co., 46, Great Russell Street.

Avis.
Des Sociétés Etrangères qui honorent la Société Asiatique de Bengale de ses pablications, sont priées de les envoyer ou directement à l'adresse de la Société, 57, Park Street, Calcutta, ou aux Agents de la Société à Londres, Mesers. Lurac et Cie, 46, Great Rnssell Street.

Anzeigr.
Ausländische Gesellschaften welche die Asiatische Gesellschaft von Bengalen mit ihren Publicationen beehren, sind hierdurch ersucht dieselben entweder direct an die Adresse der Gesellschaft, 57, Park Street, Calcutta, oder an deren Agenten in London, Messrs. Luzac \& Co., 46, Great Russell Street.

> Homolodromidæ:-Arachnodromia ($?=$ Homolodromia).
> Dromides $\left\{\begin{array}{l}\text { Dynomenide:-Dynomene, Acanthodromia. }\end{array}\right.$
> Dromiidæ :-Dromia (Dromidia, Cryptodromia, Petalomera), I'seudodromia, Conchoecetes, Sphaerodromia.
J. B. 16

JOURNAL

OF THE

ASIATIC SOCIETY OF BENGAL.

me

Vol. LXVIII. Part II.-NATURAL SCIENCE.

No. III.-1899.

Materials for a Carcinological Fauna of India. No. 5. The Brachyura Primigenia, or Dromiacea. By A. Alcock, M.B., C.M.Z.S., Superintendent of the Indian Museum.
[Received 1st September ; Read 1st November, 1899.]
The opinions adopted in this paper are those of Boas, that the Dromicicea are Brachyura ; and of Boovier, that they connect the higher Brachyura with the Homarid family of Macrura.

I have endeavoured to show that the Dromiacea, or Brachyura Primigenia, include two natural groups-Dromiidea and Homolideaeach of which is a collection of families equivalent to the collections of families recognized as Oatometopa, Cyclometopa, etc.; but, as is only to be expected in dealing with primitive groups, the families are small.

After raising a family to the rank of a tribe, and splitting it up into several independent families, it may seem inconsistent to unite the recognized geners of other authors, as is done in this paper with the genera Dromia, Dromidia, Cryptodromia, and Petalomera, all of which are treated as sub-geners of Dromia. But the reason for this treatment is that these are all linked together by intermediate forms.

The Indian species of Dromiacea number 28 and belong to the following genera and families:-
(Homolodromidæ:-Arachnodromia ($?=$ Homolodromia).
Dromidea $\left\{\begin{array}{l}\text { Dynomenidæ:-Dynomene, Acanthodromia. }\end{array}\right.$
Dromiidæ :-Dromia (Dromidia, Cryptodromia, Petalomera), Psendodromia, Conchoecetes, Sphnerodromia.
J. 12. 16

DROMIACEA or BRACHYURA PRIMIGENIA.
Anomoures Dromiens and Homoliens, (part) Milne Edwards, Hist Nat. Crast. II., pp. 168, 180.

Dromiacea, De Haan, Fann. Japon. Crast. p. 102.
Dromidea vel Anomoura Maiidica Superiora, Dans, U.s. Expl. Exp. Crust. pt. 1, p. 400.

Anomoura Dromidea, Miern, Cat. Crust. New Zealand, p. 57.
Dromiacea, J. F. V. Boas, Reoherches sar les affinités des Crustadés décapodes, p. 202.

Anomoura Dromidea, Haawell, Cat. Austral. Crust. p. 188.
Anomura Dromidea, Henderson, Challenger Reports, Zoology, Vol. XXVI., p. 2.
Dromiaces (Etudes Comparatives des), Bouvier, Bull. Soc. Philomath. Paris, (8) VIII., 1896, pp. 34-108.

Dromiidea, Ortmann in Bronn's Thier Reich, V. ii., Arthropoda, p. 1153.
Carapace seldom broader than long, subquadrilateral or subovoid (sometimes sub-circular, or urn-shaped, or sub-pentagonal), often (as also the appendages) pilose. Front narrow.

Orbits and antennulary fossm may either be altogether wanting, or there may be common orbito-antennulary fosse into which the eyes and antennules are both retractile.

The antennal peduncle consists of four separate joints, and the antennal flagellum is long.

The epistome is triangular or truncate-triangular, and is well delimited from the palate.

The buccal cavern is quadrilateral, but is usually broader in froat than behind. The external maxillipeds may be pediform, or sab-pediform, or completely opercular.

The last pair of legs are dorsal in position, and, with few exceptions, are prehensile slender and reduced in size, or even sometimes rudimentary. The penultimate pair sometimes resemble the last pair.

The abdomen in both sexes is large, and usually consists of seven separate segments: in the male it has the nsual anterior two pairs of modified copulatory appendages : in the female it has the usual four pairs of ovigerous appendages and, in addition, a pair of smaller uniramous appendages situated on the first segment.

The genital ducts of the female open upon the bases of the 2nd pair of legs (third pereiopods) : those of the male open on the bases of the fourth pair of legs (5th pereiopods).

The gills are usually phyllobranchim, but may be trichobranchim,
or may be intermediate in character. The gill-plumes vary in number from 20 to 8 on either side.

I follow Professor Boas, withont hesitation, in placing the Dromiacea at the base of the Brachyura; and I further think that no one who has access to a good spirit-collection of the two gronps in question can read M. R.-L. Bouvier's olever paper, cited above, Sur l'origine Homarienne des Crabes, withoat accepting the opinion of the latter author-an opinion previonsly suggested, as the anthor states, by Haxley-that the Dromiacea are the direotly-connecting link between the Orabs (Brachyrera vera) and the Homaridas.

The Dromiacea may be divided into two groups, which seem to me to have something more than family value, namely, the Dromiidea and the Homolidea, each of which has retained certain primitive characters while following its own line of evolution.

Tribe I. Dromidera.

Dromiens, Milne Edwards, Hist. Nat. Crast. II. 168.
Dromidze, Henderson, Challenger Anomara, p. 2.
Dromide et Dynomenidæ, Ortmann, in Bronn's Thier Reich, V. ii. Arthropoda, p. 1155.

Cara pace sometimes longer than broad, often broader than long, withont linea anomurica.

Eyes and antennules almost always (Homolodromia is the only exception) retractile into common orbito-antennalary pits, the lower wall of which is formed about equally (1) by the basal joint of the antennule itself, (2) by the basal joint of the antenna, and (3) by a sab-orbital spine or dentiform lobe.

These orbito-antennulary pits very often show traces of a subdivision into two fossm, one for the antennule the other for the eje-the boundary between the two fosses often being a tooth or a sort of fold in the upper margin of the " orbit."

Eye of the ordinary form, situated at the end of a short stout eyestalk, the basal joint of the eye-stalk being inconspicuous.

Epistome triangular, its apex usually being in close contact with the deflexed tip of the front. Vault of the palate of good depth.

External maxillipeds nanally opercular, sometimes subpediform.
Fingers of the cbelipeds generally short, stout, channelled along their opposed surfaces, and strongly calcified in their distal half.

Sternum of the female traversed longitudinally, in part or in almost all of its extent, by a pair of special grooves that sometimes end in special tabercles.

The abdomen of both sexes consists of seven separate segments. Very often a pair of small lateral plates-the rudiments, probably, of
the 6th pair of abdominal appendages-is intercalated between the 6 th and 7 th somites.

The gill-plumes vary in number from 20 to 14 on either side, and are either trichobranchiæ or phyllobranchim.

Many of the species are protected by a commensal Sponge or Ascidian, or by an empty valve of a Lamellibranch shell, carried over the back.

Tribe II. Homolidea.
Homoliens (part), Milne Edwards, Hist. Nat. Crast. II. 180.
Homolidx, Henderson, Challenger Anomura, p. 18: Ortmann in Brnnn's Thier Reich, V. ii., Arthropoda, p. 1155.

Carapace longer than broad: linea anomurica, usually present.* The eyes are not retractile into orbits, nor the antenuales into pits. Basal antennulary joint sabglobular.

The eye-stalks each consist of two movable joints, a slender conspicuous basal joint which is sometimes of great length, and a stout terminal joint that carries the eye. The antennal flagella are, except in the Latreillidæ, much longer than the carapace.

The interantennulary septum is a distinct vertical process, and is not formed merely by the close apposition of the apex of the epistome to the front.

The front forms a slender triangular prominent rostrum which may be bifid at tip, and often has a spine on either side of its base.

The division between the epistome and palate is distinct, but the vault of the palate is shallow.

External maxillipeds pediform or sub-operculiform.
The chelipeds and legs are long and slender : the fingers are not channelled en cuillère. Only the last pair of legs is dorsal and reduced in size.

Sternum of the female broad, without any special longitudinal grooves.

The abdomen of the male, and usually but not always of the female also, consists of seven separate segments. There are no lateral platelets intercalated between the 6th and 7th segments.

The gills are phyllobranchis, and the gill-plumes vary in number from 14 to 8 on either side.

[^5]In comparing the above synopses of characters it will be seen that the Dromidea as a whole have developed along Brachyorons lines in respect of the antennal flagella, orbits, external maxillipeds, and shape of the carapaoe, but have kept near to the primitive (Homarid) branchial arrangements. Whereas the Homolidea as a whole show a tendency to approach the higher Brachyura in the reduction of the branchim, but have not departed much from the primitive (Homarid) type in the form of the antennal flagella, external maxillipeds and very imperfect orbits.

Tribe I. DROMIIDEA.

The Dromiidea which, notwithstanding the more Brachynrous form of the carapace of their best known representatives, are as a whole more primitive than the Homolidea may be divided into three familiesHomolodromids, Dynomenidss and Dromide-characterized as follows :-

Family I. Homolodromids.

Carapace longer than broad, convex in both directions, the true cervical and the branchial grooves both present.

Front cut into two prominent teeth, between which, but on a much dower plane, a third small tooth is sometimes present.

Antennal flagella longer than the carapace.
External maxillipeds with a marked pediform cast.
Chelipeds equal, slender, though stonter than the legs.
First two pair of legs much longer than the chelipeds: last two pair much shorter than the first two pair, subdorsal, prehensile.

The abdomen in both sexes consists of 7 separate segments: there are no lateral platelets intercalated between the 6th and 7th segments.

The gills are trichobranchim, or are intermediate between trichobranchim and phyllobranchim: the gill-plumes are very numerousthere may be as many as 20 on either side.

Epipodites are present on the chelipeds and first two or three pairs of legs.

The sternal grooves of the female are short, ending at the level of the genital openings.

To this family belong the following genera:-

1. Homolodromia, A. Milne Edwards, Bull. Mus. Comp. Zool., VIII. 1880, p. 33 : Recueil de Fig. de Crustacés Nouveaux, pl. 39, fig. 2.
2. Dicranodromia, A. Milne Edwards, Ball. Mus. Comp. Zool., VIII. 1880, p. 31 : Recueil de Fig. de Crust. Nouv. pl. 10.
3. Arachnodromia, Aloock, seq.

Family II. Dynomenide, Ortmann.

Dynomenidæ, Ortmann in Bronn's Thier Reioh, V. ii., Arthropoda, p. 1155.
Carapace variable, either longer than broad and convex, or broader
than long and flattish. Branchial groove usually present, cervical groove sometimes present.

Front broadly triangular, sometimes notched at tip. Antennal flagella not so long as the carapace.

External maxillipeds typically opercular, completely closing the buccal cavern.

Chelipeds equal or slightly nnequal, generally much stouter than the legs.

First three pair of legs stont, about as long as the chelipeds. Fourth (last) pair of legs dorsal and rudimentary.

The abdomen in both sexes consists of 7 segments, and there is a pair of lateral platelets intercalated between the last two segments.

The gills are phyllobrancbia but sometimes show the transition from tricho- to phyllobranchim. The gill-plumes are 16 (P) on either side.

Epipodites are present on the chelipeds and first three pair of legs.
Sternal grooves of the female ending at the level of the genital openings.

To this family belong (1) Dynomene and (2) Acanthodromia, both of which are represented in Indian Seas.

Family III. Dromidar, restr.
Carapace variable, sometimes as long as or even a little longer than broad, sometimes slightly broader than long; generally strongly convex in both dircetions, sometimes flat; commonly ovoid or subcircular, occasionally pentagonal.

* Branchial groove almost always conspicuons, the true cervical groove present or absent on the dorsum of the carapace.

Front usually cut into 3 teeth, the middle one of which is always on a much lower plane than the others and is often of insignificant size or even absent: the front is rarely triangular, without lateral teeth. Antennal flagella shorter than the carapace.

External maxillipeds typically opercular, completely closing the buccal cavern.

Chelipeds equal, generally much stouter than the legs.
First two pair of legs gecerally stout, not much shorter than the chelipeds.

Last two pair of legs generally much reduced in length and slender, subdorsal and prehensile. There is a tendency for the fourth (last)

[^6]pair to be a little longer than the third pair, and occasionally the fourth pair are as long as either of the first two pair.

The abdomen in both sexes consists of 7 segments, and there is a pair of lateral platelets intercalated between the last two segments.

The gills are phyllobranchim and are 14 in number on either side. \dagger
An epipodite of small size is present on the chelipeds but not on any of the legs. \dagger

The sternal grooves of the female are variable: they may end at the level of the genital openings, or at the bases of the first pair of legs, or at the bases of the chelipeds.

To this Family the following genera belong:-

1. Dromia, Fabr. : seq.
2. Dromidia, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 225 (subgenus of Dromia).
3. "Cryptodromia, Stimpson: seq. (sabgenus of Dromia).
4. Petalomera, Stimpson : seq. (sabgenas of Dromia).
B. Pseadodromia, Stimpson: seq. (P subgonus of Dromia).
5. Eudromia, Henderson, Challenger Anomara, p. 13.
6. PPPAscidiophilus, Richters, in Mobins, Meeresf. Maurit. p. 158 (it is ver'y doubtfal whether this form really belongs to the Dromiacea).
7. "Conchoecetes, Stimpson: seq.
8. Hypochoncha, Guérin, Rev. et Magasin de Zool. (2) VI. 1854, p. 333.
9. Sphærodromia, Aloook, seq.

Tribe II. HOMOLIDEA.

The Homolidea may be divided into two families Homolidss and Latroillids.

To the Homolidm belong (1) Homola (with subgenera Homolax and Paromola), (2) Paromolopsis and (3) Hypsophrys, all of which are represented in Indian Seas.

To the Latreillidæ belong (1) Latreillia and (2) Latreillopsis, both of which are found in Indian Seas.

I am ancertain of the position of Homologenus A. Milne Edwards, whioh, bat for its singular branohial formala, would be placed with the Homolidx. It may perhaps have to be separated as a distinct subfamily of the Homolider. The references to the literature of this genus are : Bull. Mas. Comp. Zool. VIII., 1880, p. 34, (Homolopais name pre-oconpied) : Ohallenger Anomura, p. 20 : Ball. Soc. Philom., Paris, (8) VIII., 1898, p. 63 : Bronn's Thier Reioh V. ii., Arthropoda, p. 1156.
† Huxley (P. Z. S. 1878, p. 785) gave, as the sum of the branchial formala of Dromia, gills $16+1$ epipodite. Milne Edwards (Hist. Nat. Crast. II. 172) stated that the gills are 14 in number on either side. I have examined Dromia Rumphii and D. ciliata, Oryptodromia lateralis, Petalomera granulata and Oonchoecotes artificioens, in all of which I find 14 branchim and 4 epipodites on either side : of the epipodites, 8 belong to the maxillipeds, and one-a small one-to the chelipeds.

Family I. Honolide restr.

Carapace elongate-quadrangular, or ovoid, or urn-shaped.
Terminal joint of the eyestalk (with the eye) either longer or shorter than the slender basal joint. Antennal flagella much longer than the carapace.

External maxillipeds pediform or subpediform.
The gill-plumes are 14 in number on either side, and there are epipodites to the chelipeds and first two pair of legs.

Homola, Paromolopeis and Hypsophrys, vid. seq.

Family II. Latreillidae.

Carapace elongate-quadrangular, or piriform.
Basal joint of eye-stalk very much longer than the terminal joint.
Antennal flagella not so long as the carapace.
External maxillipeds sub-operculiform.
The gill-plames are 8 in number ou either side and there are no epipodites to the chelipeds or legs.

Latreillia and Latreillopgis, vid. seq.
Tribe DROMIIDEA.
Family HOMOLODROMID压.
Arachnodromia, Alcock.
Arachnodromia, Aloock, Investigator Deep Sea Braohyura, p. 17.
Carapace elongate-oblong bat somewhat broader behind than in front, deep, inflated, tomentose, its texture thin but well calcified: two oreases break either lateral border, the posterior one being the more distinct and being continued to the cardiac region ($=$ branchial groove), the anterior one, or true cervical groove, not proceeding far on to the dorsum of the carapace.

The front is horizontal, prominent, and deeply bifid.
The antennule and eye of either side are completely retractile into a common deep fossa (just as in Dromia) which affords them complete protection. As in Dromia, the floor of this common antennalar-arbital fossa is formed by a subocular ("antennal") tooth in contact with the basal joint of the antenna, and, as in Dromia, the outer wall of the orbit is breached by a wide gap. The orbital portion of the fossa, which is loosely filled by the eyes, has the hollow for the eyes mach deeper than the hollow for the eyestalk. The eyestalks are long and slender, the eyes small but perfectly formed and well pigmented.

The two basal joints of the antennæ, which are quite freely movable, largely fill the gap in the lower wall of the orbit, and lie in the
same plane with the antennules ; the second joint has its antero-external angle produced to form a coarsish spine: the antennal flagella are longer than the carapace.

The palate is particularly well demarcated from the epistome and is rather broader in front than behind: the ridges that define the expiratory canals are very distinct. The epistome is in the closest possible contact with the front, bat without complete fusion. The external maxillipeds are distinctly operculiform, but owing to the moderate expansion of the merus and to the coarseness of the palp, they have a slight pediform cast: they close the buccal cavern, but not so tightly as in Dromia.

The chelipeds are equal and are rather slender, though considerably stoater than the legs: the fingers are well calcified and are bollowed en cuillere, the tip of the dactylas shats into a notch in the tip of the opposed finger.

The legs are cylindrical : the first two pairs are very long, the last two are short, sabdorsal in position, and cheliform rather than subcheliform.

I'Ine sternal grooves of the female end opposite the openings of the oviducts, withont tabercles.

The abdomen of both sexes consists of seven distinot segments. In both sexes the pleare of the 3rd-6th abdominal somites are remarkably free and independent (i.e. not in contact with those in front and behind) and the last abdominal tergum is nearly as long as the preceding five combined. In the male this last tergam is marked in a way that suggests its formation out of a segment fused with a pair of appendages.

This crustacean, as I have previously remarked, so closely resembles the Homolodromia described and figured by Milne Edwards* and referred to by Bouvier, \dagger that at first sight it might be supposed to be the same form.

In Homolodromia, however, it is distinctly stated that the antennules are not retractile, and that there are no special orbits.

In Arachnodromia, on the other hand, there are orbits formed on exaotly the same plan as, and hardly less perfect than, those of Dromia, and they afford complete protection to the retracted eyes and antennules, the antennulary flagella folding, as in Dromia, behind the eyes.

[^7]The branchial formula is as follows:-

Somites and					
their appendages.		Podobranchim.	Arthrobranchim.	Plearobranchim.	
VII.	...	0 op.	0	0	- ep.
VIII.	...	$1+$ ep.	1	0	$=2+e p$
IX.	-*	$1+\mathrm{op}$.	2	0	- 3+op.
X.	-."	$1+$ ep.	2	0	$=8+9 p$.
XI.	...	$1+$ ep.	2	1	$=4+$ ep.
XII.	...	1+ep.	2	1	$=4+\mathrm{ep}$.
XIII.	...	0	2	1	- 3
XIV.	...	0	0	1	$=1$
		$5+6$ ep.	11	4	20+6 ep

The formula is thus the same as that given by Bouvier for Homolodromia.

1. Arachnodromia Baffini, Alcook and Anderson.

Arachnodromia Bafini, Alcook and Anderson, Ann. Mag. Nat. Hist., Jan. 1899, p. 7: Alcook, Investigator Deep Sea Brachyura, p. 19, pl. ii. fig. 1.

Carapace square-cat, dorsally convex, very distinctly (from a fourth to a fifth) longer than broad, its greatest breadth being just in front of the posterior border, its greatest depth approximating its greatest breadth, its surface-like that of the appendages and other parts of the body-tomentose. Except for a few small sharp granules anteriorly and laterally and along the lateral border, the carapace is nnarmed.

The front is deeply cleft to its base, and has the form of two acutely triangular teeth.

Upper margin of orbit notched near its outer angle which is dentiform, the outer angle of the lower margin of the orbit is much more strongly dentiform, and the (onter) orbital wall between the two spines is deficient.

Antennal flagella longer than the carapace.
Chelipeds rather slender, unarmed except for a few granules seen on denudation, about $1 \frac{8}{5}$ times the length of the carapace : fingers strongly hollowed 'en cuillere,' especially the immovable one, which alone has teeth : wrist not elongate.

First two pairs of legs more than twice the length of the carapace: their dactyli are aboat two-thirds the length of the preceding joint, are stont, are sharply spinate along the posterior edge, and end in a claw. The last two pairs of legs are about the same length as the carapace: their small claw-like dactyli shat down on a ring of spines at the end of the preceding joint.

Colours : dirty whitisb, with a bluish tinge on the carapace and a faint reddish tinge elsewhere; eyes chocolate.

Two males and a female, from off the Travancore coast, 430 fms.: 2 small male from the Andamans, 238-290 fms.

The carapace of the largest male is 20 millim. long and $15{ }^{\circ}$ millim. browd, that of the female is 30 millim. long and 24 millim. broad.

Named in memory of the great Arotic explorer William Baffin, who, according to Sir Olements Markham, was the first Englishman to actually plot charts in these Seas.

Family DYNOMENIDA.

This family includes two genera which may be thus diagnosed :I. Carapace flattish, broador than long, covered with hairs Dryomeng.
II. Carapace convex, longer than broad, covered with spines or spinules

Adanthodromia.

Dinombne, Latreille.

Dynomene, Latreille in Cavier's Règne An. (nouv. ed. 1829) p. 69 : Desmarest, Consid. Gon. Crast. p. 183 : Milne Fdwards, Hist. Nat. Crnst. IL, 179 : Lamarck, Hist' Nat. Anim. sans Vert. (2nd ed.) p. 482 : De Haan, Faan. Japon. Crust. p. 104: Dana, J. S. Expl. Exp. Orust. pt. I. p. 402 : A. Milne Edwarde, Ann. Sci. Nat. Zool., (6) VIII. 1879, Art. 3 : Ortmann in Bronn's Thier Reich, V. ii., Arthropode, p. 1156.

All parts usually tomentose.
Carapace subcircular, flattish, broader than long.
Front broadly triangular, dorsally grooved, more or less distinctly notched or divided at tip.

Palate well delimited from epistome: efferent branchial channels well defined.

The chelipeds usually do not differ greatly in size from the first 3 pair of legs : these are stout and of about equal length.

The 4th (last) pair of legs are quite rudimentary and alone are dorsal in position.

As regards the branchial formula, according to Bouvier it follows the Dicranodromia and Homolodromia type.*

Distribution : Tropical Indo-Pacific, from Madagascar to California.

2. Dynomene pilumnoides, n. sp.

The carapace and appendages are covered with an exceedingly thick tomentum of clab-shaped hairs, the chelipeds and legs are also

[^8]thickly fringed with additional longer hairs. The hairs completely conceal all the texture and sculpture beneath them.

Carapace subcircular, slightly broader than long, flattish. The true cervical groove is well defined, but the branchial groove is hardly distinguishable.

There are a few very inconspicuous symmetrically-disposed elevations on the gastric and on the anterior part of the branchial regions.

Front broadly-triangular, deeply grooved in the middle line. Upper border of orbit obliqne, with a fold or notch (best visible from inside the orbit) marking the equivalent of the inner supra-orbital angle of the higher Brachyara. Outer orbital angle not dentiform. Suborbital lobe neither dentiform nor prominent.

Lateral borders of carapace with 5 spine-like teeth, the last of which is much the smallest and stands at the branchial groove.

Chelipeds in the male a little unequal, the smaller one not stouter and not quite so long as, the larger one a little stouter and about as long as, the first 3 pair of legs.

When the chelipeds and legs are denuded their surface is smooth and unsculptured, except that the posterior border of the dactyli of the legs is serrated.

The fourth (last) pair of legs are small slender rudiments, not a fourth the length of the 3rd pair.

A single male from off the Laccadives, 50 to 30 fathoms. Its carapace is 10 millim. long and a little over 11 millim. broad.

The smoothness of the carapace, chelipeds, and legs, and the inequality of the chelipeds distinguish this species from D. hispida, of which, however, it may prove to be only a variety.

Acanthodromia, A. Milne Edwards.
Acanthodromia, A. Milne Edwards, Bull. Mus. Comp. Zool., VIII. 1880, p. 31 : ${ }^{\text {E. }}$ L. Bouvier, Bull. Soc. Philomath. Paris, (8) VIlI. 1895-96, pp. 56, 57 : Ortmana in Bronn's Thier Reich, V. ii., Arthropoda, p. 1155.

Differs from Dynomene in having the carapace longer than broad, convex, and closely covered with spines instead of hairs.

Distribution: Caribbean Sea, Andaman Sea.
3. Acanthodromia margarita, Alcock.

Dynomene margarita, Alcock, Investigator Deep-Sea Brachyara, p. 19, pl. ii. fig. 3.

The whole carapace and dorsal surfaces of the chelipeds and legs are as closely as possible covered with spines and spinules: the under surfaces of the body and legs, the eye-stalks, antennæ, and external maxillipeds are closely and crisply grannlar.

On the middle of the fourth abdominal tergam is a pair of large smooth tabercles, exactly like pearls, in the closest contact with one another.

Carapace sab-cylindrical, longer than broad; the regions hardly indicated, though the branchial groove is fairly plain.

Front triangular, deflexed, dorsally concave; its apex is in close contact with that of the epistome, and is surmounted by a horizontal spine similar to the larger spines of the surface of the carapace. Supraorbital borders tamid.

Antennal flagellum nearly as long as the carapace.
Chelipeds equal, a little longer and stonter than the first three pair of legs, and not mach longer than the carapace. The fingers are short and stont, and meet throughout their extent.

The last pair of legs are slender rudiments, hardly longer than the basal joints of the other legs.

Colours in spirit, milk-white; eyes deeply pigmented.
A single small male from the Andaman Sea, 75 fathoms. The length of its carapace is 5 millim.

Family III. DROMIID压.

Key to the Indian Genera and Sub-genera of Dromiidm.
I. Front much as in Dynomene, broadly triangular, dorsally grooved, notched at tip. The sternal grooves of the female do not quite reach to the level of the genital openings on the 2nd pair of legs (third pereiopods)

SpHergodromia.
II. Front usually cut into 3 , sometimes into 2 , teeth, rarely entire and triangular. The sternal grooves of the female reach at least as far as the level of the bases of the lat pair of legs (2nd pereiopods) : -

1. Third pair of legs, though shorter, not less stout than the first two pair; ending in a hage talon-like dactylus : fourth (last) pair of legs short and very slender. Carapace flat and pentagonal

Conchonceres.
2. Third pair of legs similar to, though sometimes shorter than, the fourth (last) pair. Carapace usually convex:-
i. Fourth (last) pair of legs shorter than the first two pair :-
a. Legs smooth, the meropodites not specially dilated Dromia \& Dromidia.
b. Legs nodular, the meropodites not specially dilated Ceyptodromia.
c. Legs nodular; the meropodites of the chelipeds and first or first two pair of legs dilated, petal-like Petalomera.

ii. Fourth (last) pair of legs at least as long as either of the first two pair Psrododromia.

Sphserodromia and Conchoecetes, and doubtfully also Pseudodromia, are to be looked upon as distinct genera. But there are nudoabtedly forms that are transitional between Dromia and Dromidia, Dromia and Cryptodromia, and Cryptodromia and Petalomera, and even between Dromia and Pseudodromia, so that these ought not, in a natural system, to be separated, though for convenience they may stand as sulbgenera.

Dromia, Fabr.

Dromia, Fabricins, Ent. Syst. Sappl. p. 859 : Latreille, Hist. Nat. Crust. \&c., V. p. 388, and Nouv. Dict. Hist. Nat. IX. p. 583 : Leach, Malac. Pod. Britt. Text of pl. xziv A : Bisso, Hist. Nat. Crust. Nice, p. 15, and Hist. Nat. Farop. Mérid. V. p. 82 : Desmarest, Consid. Gen. Crust. p. 136 : Milne Fdwards, Hist. Nat. Crust. II. p. 170 : Lamarck, Hist. Nat. Anim. sans Verteb. (2nd ed. 1888) V. p. 480 : De Haan, Fann. Japon. Crust. p. 104 : Dana, U. S. Expl. Etrpd. Crust. pt. I. p. 402 : Btimpeon, Próc. Acad. Nat. Soi. Philad. 1858, p. 226: Henderson, Challenger Anomura, pis: Ortmann in Bronn's Thier-Reich, V. ii. Arthropoda, p. 1155.

All parts except the tips of the fingers and of the dactyli are, generally, tomentose.

Carapace not elongate in the adult, strongly convex or subglobose.
Front cat into three teeth, of which the middle one is on a lower plane than the others and is often so mach smaller than them and so much deflexed as to be hardly visible from a dorsal view.

Palate well delimited from the epistome : efferent branchial channels well defined, bat not always bounded by distinct and anbroken ridges.

The chelipeds may have some of the joints nodose, but the legs are smooth.

None of the legs have the merus dilated. The last two pair of legs are distinctly subcheliform, the spine at the end of the propodite against which the dactylus closes being well developed.

The sternal grooves of the female do not meet, and they end on the 2nd segment of the sternnm, between the 2nd pereiopods.

The branchial formula is as follows :-

Key to the Indian species of the genus Dromia.

I. Carapace, in the adult, broader than long: front cut into 3 teeth of nearly equal size, of which the middle one is slightly the most prominent : third (penultimate) pair of legs hardly shorter than the forrth (last); no large spine at the far end of the posterior border of the propodite of the fourth (last) pair
D. rumphii.
II. Oarapace, in the adult, at least as long as broad: front cut into 8 teeth, of which the middle one is so small and so mach deflexed as to be almost invisible in a dorsal view : third pair of legs very markedly shorter than the fourth; a spine at the far end of the posterior border of the propodite of the fourth (last) pair quite as long as that at the aame end of the anterior border:-

1. True antero-lateral border of the carapace with' 3 or 4 spines D. cranioides.
2. True antero-lateral border of the carapace entire ... D. unidentata.

4. Dromia Rumphii, Fabr.

Cancer lanosus, Ramph, Amboin. Rariteitk. p. 19. pl. xi. fig. 1 : Seba, Thesaurus, III. pl. xviii. fig. 1.

Dromia Rumphii, Fabricine, Ent. Syst. Suppl. p. 860: Milne Edwards, Hist. Nat. Crust. II. 174: De Haan, Faan. Japon. Crast. p. 107, pl. xxxii : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 240: Tozzetti, "Magenta" Crust., p. 207 : Hilgendorf MB. Ak. Berl. 1878, p. 812 : Miers, Ann. Mag. Nat. Hist. (5) V. 1880, p. 370 : Walker, Journ. Linn. Soc. Zool., XX. 1886-1890, p. 111 : Ortmann, Zool. Jahrb. Syst. \&o., VI. 1892, p. 548 : J. R. Henderson, Trans. Linn. 800., Zool, (2) V. 1893, p. 406.

All parts, except the tips of the fingers and dactyli thickly covered with a harsh tomentum, with sometimes scattered tufts of longer hair on the carapace.

Carapace in adults broader than long, strongly convex, smooth; the cardiac region and the branchial or "cervical" groove on either side of it plainly marked, the gastric region faintly indicated.

Front cut into 3 nearly horizontal teeth of nearly equal size, the middle one on a lower plane and slightly the most prominent.

In young specimens a projection of the upper edge of the "orbit" marks the position of the true inner supra-orbital angle of the higher Brachyura, but in large specimens this is obsolete.

The true antero-lateral borders of the carapace are cut into 3 sharp but coarsish spines, the 2nd of which often has a small secondary denticle at its base. In addition there is a spine on the summit of the infra-orbital lobule, and another at the outer angle of the buccal cavern.

The postero-lateral borders are convergent and have one large coarse spine, placed immediately behind the cervical groove.

The borders of the arm are dentate, especially the upper border, and there are 2 or 3 teeth at the distal end of the upper border of the
wrist and also along the upper border of the hand : all these dentations tend to disappear with age, but two tubercles at the distal end of the outer surface of the wrist are persistent.

The last two pair of legs are about equal in length, being hardly half as long as either of the first two pair : their propodites are much shortened and their dactyli are claw-like, forming chelm with the opposing spines at the end of the propodites.

Abdomen of male with a broad convex ridge down the middle line.

Sternal tubercles of female very prominent.
Iu the Indian Museum are specimens from the Persian Galf, Malabar coast (28 tq 49 fms.), Ceylon, Coromandel coast, Orissa coast (25 fms.) and Gulf of Martaban (67 fms.)-also 2 from Mauritius.

The largest specimen, from Manritius, is $5 \frac{3}{4}$ inches across the carapace.

Distribution: Indo-Pacific Seas from the Red Sea, Mozambique, and Mauritius, to Japan.

5. Dromia cranioides, de Man.

Dromidia cranioides, de Man, Journ. Linn. Soc. Zool., XXII., 1887-88, p. 208, pl. xiv. figs. 6-8.

Carapace etc. tomentose. Carapace globose, a little longer than broad, perfectly smooth except for the "cervical" groove and for two small faint elevations side by side just behind the front.

Front cat into 3 teeth, the middle one of which is so small and on a plane so much lower than the others that it is hardly seen in a dorsal view.

A strongly marked acuminate tooth near the middle of the upper border of the orbit is equivalent to the inner supra-orbital angle of higher Brachyura. Sub-orbital lobe dentiform, very prominent. Outer orbital angle well defined, dentiform.

True antero-lateral borders of the carapace cut into 3 or 4 teeth; when 4, it is by intercalation of a little tooth close to the base of the lst. A tooth, but not a strongly pronounced one, at the outer angle of the buccal cavern.

Postero-lateral borders slightly convergent, with one tooth placed immediately behind the branchial or "cervical "groove.

Borders of arm granular or obtusely denticulate, as also are the upper border of the wrist and of the hand : two tubercles at the distal end of the outer surface of the wrist.

The last two pair of legs have a claw-like dactylus which meets, in a cheliform manner, a spine at the end of the corresponding propodite.

The last pair are mach longer than the last pair but one, being, in fact, very little shorter than either of the first two puir.

Abdomen as in D. Rumphii.
The sternal grooves of the female approach one another closely, but do not actually meet, on the 2nd segment of the sternum, near the anterior end of which they terminate, without tubercles.

In the Indian Musenm are 5 females and 2 males, from the Andamans and Mergui.

The length of the carapace of the largest specimen is 28 millim.
This species may perhaps turn out to be ideutical with Dromia indica Gray (Zool. Miscell., p. 40).

6. Dromia unidentata, Rüppell.

Dromia unidentata, Rappell, 24 Krabben roth. Meer., p. 18, pl. iv. fig. 2, pl. vi. fig. 9 : Mine Edwards, Hist. Nat. Crust. II. 178: A Milne Edwards, Nouv. Archiv. du Mus. IV. 1868, p. 72 : Hilgendorf, MB. Ak. Berl. 1878, p. 818 : Müller, Verh. Nat. Ges. Basel. VIII. 1886, p. 472.

Dromidia unidentata, Kossmann, Reise roth. Meer. Crust. p. 67: de Man, Journ. Linn. Soo. Zool. XXII. 1887.88, p. 207, pl. xiv. figs. 4-5: Oano, Boll. Soc. Nat. Napol. III. 1889, p. 255 : Henderson, Trang. Linn. Boc. Zool., (2) V. 1898, p. 405 : Ortmann, in Semon's Zool. Forschangar. (Jenen Denkschr. VIII) Crust. p. 84.

Carapace etc. densely tomentose. Carapace about as long as broad, strongly convex, with some dimples when dennded, two of which, separating the post-gastric from the branchial regions, are specially conspicuous. "Cervical " groove well marked.

Front cut into two broadish but sharp teeth, between which, but on a very much lower plane, is an extremely inconspicnous denticle.

A broad tooth ("internal supra-orbital angle") near the middle of the upper border of the orbit. Outer orbital angle prominent but not dentiform. Suborbital lobe bluntly dentiform, but not prominent.

Antero-lateral borders entire, rather sharp. A slight projection, hardly amounting to a tooth, on the postero-lateral border, immediately behind the branchial or "cervical" groove.

Chelipeds smooth, except for two tubercles at the far end of the outer surface of the wrist.

The fourth (last) pair of legs are not so very much shorter than either of the first two pair and are very much longer than the 3rd pair. The propodites of the last two pair are much broader than long and are very spiny, one of the spines in the case of the last pair being as least as long as the spine against which the claw-like dactylus closes-so much so, that the last pair of legs appear to end in 3 claw-like spines the middle one being the dactylus.
J. 11.18

The abdomen of the male, when denuded, has a broad convex ridge down the middle line; but when not denuded, the terminal segments of the male abdomen form with the basal joints of the chelipeds and first two pair of legs a remarkably flat surface, owing to the abrupt angular bending up of the last three abdominal segments.

The sternal grooves of the female approach one another closely, bat do not actually meet, on the second segment of the sternam, near the anterior end of which they terminate, but withont tubercles.

In the Indian Museum are 4 males and an egg-laden female, from Mergui, Port Blair, and the Persian Gulf.

The carapace of the largest specimen is 24 millim. long.
In one of the male specimens, in which the vasa deferentia are, as usual, wonderfully prominent, there are also openings in the basal joints of the 2 nd pair of legs (3 rd pereiopods) corresponding with the genital openings of the female.

Distribution: Red Sea and East coast of Africa, Persian Gulf, Ceylon, Coromandel coast, Andaman Sea, Malay Archipelago.

Subgenus Dromidu, Stimpson.
Dromidia, Stimpson, Proc. Ac. Nat. Soi. Philad., 1858, p. 225: Henderson, Challenger Anomara, p 12: Ortmann in Bronn's Thier Reioh, V. ii. Arthropoda, p. 1155.

Dromidia is stated to differ from Dromia in having (1) the efferent branchial channels defined each by a distinct ridge, and (2) the sternal grooves of the female produced to, and approximated together on, the segment bearing the chelipeds.

Neither of these characters is sufficiently definite to be of generic value, and I do not think that they are enough to justify even subgeneric recognition.

Henderson (Trans. Linn. Soc., Zool. (2) V. 1893, p. 406) includes Dromia (Dromidia) australiensis Haswell in the Indian Fauna, basing his identification on de Man's figure (Archiv. für Naturges. LIII. 1887, i. pl. xvii. fig. 6.) But as that figure does not seem to me to correspond unequivocally with Haswell's description (Proc. Linn. Soc., N. S. Walea, VI. 1882, p. 755, and Cat. Austral. Crust. p. 139), it is sufficient for present proposes to quote these references.

Subgenus Cryptodromil, Stimpson.
Cryptodromia, Stimpeon, Proc. Ac. Nat. Soi. Philad., 1858, p. 225 : Miers, Cat. Crust. New Zealand, p. 67 : Haswell, Cat. Austral. Crust., p. 138 : Henderson, Challenger Anomura, p. 5 : Ortmann in Bronn's Thier Reioh, V. ii. Arthropoda, p. 1155.

Epidromia, Kossmann, Reise roth-Meer., Crast., p. 69.

Differs from Dromia only in the following particalars :-
The tomentum when present is mach shorter and more velvet-like. The legs, or at least the first two pairs of them, are nodular, as well as the clelipeds. According to Bouvier and Ortmann the chelipeds are without an epipodite; but in O. lateralis this is not the case, and a small epipodite is present. The ridges that define the efferent branchial channels are distinct and anbroken.

The species are all small.

Key to the Indian species of Cryptodromia.

I. Carapece smooth (non-granular) :-

1. No spines on dorsal surface of carapace :-
i. Front cut into 8 teeth, all of which are plainly visible in a dorsal view : antero-lateral borders of carapace with more than one tooth: legs nodular:-
a. Antero-lateral borders with 8 teeth (not including the onter orbital angle and some teeth on the subhepatic region) C. tuberculata.
b. Antero-lateral borders with 2 teeth (not including the onter orbital angle, etc.) :-
a. Regions of carapace well defined : no tubercle on the surface of the maxillipeds...
O. canaliculata.
A. A pearl-like tabercle in the middle of the exposed surface of the meras of the external maxillipedse ... O. bullifera.
ii. Front cut into 8 teoth, the middle one of which is hardly seen in a dorsal view : antero-lateral borders of carapace with a single tooth, at their anterior end : legs hardly nodnlar C. hilgendorfi.
2. A dorsal spine on the hepatic region of the carapace, just
behind the oater orbital angle C. de Manii
II. Carapere (and appendages also) profasely granular: the regions of the carapace well defined and areolated :-
3. Carapace sabcircular in ontline, its antero-lateral borders entire C. ebaliondes,
4. Carapace pentagonal in outline, its antero-lateral borders dentate C. Gilesii.

7. Dromia (Cryptodromia) tuberculata, Stimpson.

Cryptodromia tuberculata, Stimpson, Proc. Ac. Nat. Sci., Philad. 1858, p. 239 : de Man, Archiv. f. Naturges. LIII. 1887, i. p. 401.

Var. pileifera, nov.
Carapace etc. covered with a short scurfy tomentum which does not conceal the underlying texture.

Carapace broader than long, convex, smooth, without distinction of regions : the cervical groove broad, shallow.

Front cot into 3 broad triangular teeth of about equal size, the middle one of which is on a lower plane than the others and is deffexed.

A sharp tooth near the middle of the upper border of the orbit marks the true inner sapra-orbital angle. Onter orbital angle dentiform. Suborbital lobe dentiform and very prominent.

True antero-lateral border cat into 3 or 4 blant teeth : in the gap between the lst tooth and the onter orbital angle two subhepatic teeth-one of which is large-show up and, from a dorsal view, look as if they belonged to the antero-lateral border : there are two similar teeth, one alone of which is conspicnons, at the onter angle of the bnccal cavern.

On the postero-lateral border, at the branchial or "cervical" groove, is a denticle.

Wrist and palm, and corresponding joints of first two pair of legs, sharply and profusely nodular or tubercular on the outer surface: fingers compressed.

The third pair of legs, though much slenderer and less nodular than the first two pair and only about half their length, are fashioned on much the same plan, except that the propodite is much shortened : the spinule at the end of the propodite of this pair is not big enough to form a chela with the claw-like dactylus.

Last (4th) pair of legs slender and smooth, hardly a dactylus length shorter than the 2nd pair: their'propodite has spines at the end of both borders, the spine at the end of the anterior border being large enough to form a chela with the dactylus.

Abdomen of the male slightly convex along the middle line, the 4th and 5th terga with some little nodules : in the female the 3rd-5th terga have the surface a little aneven, but not distinctly nodular.

Every specimen has a commensal sponge which covers it completely like a cap.

In the Indian Museam are 70 specimens from the Andaman reefs.
The carapace of a large egg-laden female is 9 millim. long and 11 millim. broad.

8. ? Dromia (Cryptodromia) canaliculata, Stimpson.

? Cryptodromiu canaliculata, Stimpson, Proc. Ac. Nat. Ēci. Philad. 1858, p. 240: de Man, Archiv. f. Naturges. LIII. 1887, i. p. 402 (et synon.) : Ortmann, Zool. Jahrb., Syst. etc. VI. 1892, p. 645.

Dromia tomentosa, Heller, SB. Ak. Wien, XLIV. 1861, p. 241 : Cryptodromia tomentosa, Hilgendorf, MB. Ak. Berl. 1878, p. 813, pl. ii. figs. 3-5 : Kossmann, Reise roth. Meer. Crust. p. 68.
? Oryptodromia pentagonalis, Hilgendorf, MB. Ak. Berl., p. 814, pl. ii. figs. 1-2 : Henderson, Trang. Linn. Soc. Zool. (2) V. 1893, po 406.

Carapace etc. with a short velvet-like tomentum.
Carapace not quite as long as broad, only moderately convex, its surface smooth, its regions very fairly indicated: the "cervical" groove is distinct, the fronto-orbital region is marked off by a shallow transverse groove that runs from one antero-lateral angle of the carapace to the other, and the front itself is longitudinally grooved.

Front cut into 3 broad triangular teeth of nearly equal size, the middle one nearly horizontal, but on a much lower plane than the others, which are somewhat upcurved.

A tooth near the middle of the upper border of the orbit marks the position of the true inner supra-orbital angle. Onter orbital angle dentiform. Infra-orbital lobe dentiform and prominent.

True antero-lateral borders with 2 teeth : in the concave space between the lst (large) tooth and the outer orbital angle a stout subhepatic tooth shows up: below this again is a tooth at the outer angle of the buccal cavern.

On the postero-lateral border, immediately behind the branchial or "cervical" groove, is a tooth.

Onter surface of wrist nodular: a few nodules on npper border of palm : fingers short and stout.

The carpus and propodite of the first 2 pair of legs are nodular.
Last 2 pair of legs short and slender, not nodular, not much more than half the length of the first 2 pair : the 4th (last) pair very little longer than the 3rd. Both end in a strong claw-like dactylus, bat are hardly cheliform, although there is a small spine at the end of the propodite of each.

Abdomen of male with a convex ridge down the middle line.
In the Indian Maseum are 2 males and a female, from the Andamans and the Persian Gulf.

The carapace of the largest specimen is 14 millim. long.
Distribution: Indo-Pacific Seas from the Red Sea and east coast of Africa to Japan.

9. Dromia (Cryptodromia) bullifera, n. sp.

Carapace etc. covered with a short tomentum.
Carapace about as long as broad, convex, smooth, "cervical" groove shallow but distinct.

Front cut into 3 acute rather slender teeth, the middle one of which is on a lower plane and is slenderer than the others.

An acute spine near the middle of the npper border of the orbit
marks the position of the true inner supra-orbital angle. Outer orbital angle spiniform. Suborbital lobe dentiform, fairly prominent.

True antero-lateral borders of the carapace cat into 2 teeth, the anterior being much the larger and spiue-like. In the gap between the lst tooth and the outer orbital angle two small smooth sabhepatic tubercles are visible, one below the other.

An elegant pearl-like tubercle below the sub-orbital lobe, a similar but smaller tubercle in the middle of the exposed surface of the merus of the external maxillipeds and another in the middle of the exposed surface of the second joint of the antennal peduncle, are characteristic.

An extremely inconspicaons denticle on the postero-lateral border, behind the branchial or "cervical" groove.

Onter surface of wrist and upper surface of hand nodular, two of the nodules on the wrist being particularly acate.

Oater surface of carpus and propodite of first 2 pair of legs broken bat not nodular.

Last 2 pair of legs slender and very short, ending in claw-like dactyli, bnt not cheliform.

Abdomen of male convex along the middle line.
One specimen from the Andaman Sea, 490 fathoms, another from off Ceylon, 34 fathoms.

The carapace is between 5 and 6 millim. long.
10. Dromia (Cryptodrnmia) de Manii, n. sp.

Cryptodromia sp. de Man, Joarn. Linn. Soo. Zool,, XXII., 1888, p. 211.
Carapace etc. tomentose.
Carapace as long as broad, convex, smooth, the "cervical" groove rather indistinct.

Front cat into 3 teeth, the middle one of which is the smallest and is much deflexed.

A tooth near the middle of the apper border of the orbit (true inner supra-orbital angle). Outer orbital angle dentiform.

Saborbital lobe dentiform, but not very prominent.
True antero-lateral border with two blant teeth : two more blant teeth on the sabhepatic border and one at the angle of the buccal cavern are continued on from the antero-lateral border.
A tooth on the hepatic region, dorsad of the antero-lateral border, and just behind the outer orbital angle, is characteristic.

A tiny denticle on the postero-lateral border, just behind the branchial or "cervical" groove.

Oater surface of wrist and upper surface of hand nodular ; outer surface of haud granular.

Outer surface of carpus and propodite of first two pair of legs uneven bat not distinctly nodular.

Last 2 pair of legs short, ending in claw-like dactyli, not cheliform; the 3rd pair shorter than the 4th.

A single small specimen from Mergui (Anderson collection).

11. Dromia (Cryptodromia) Hilgendorfi, de Man.

Cryptodromia Hilgendorf, de Man, Archiv. f. Naturges. LIII. 1887, i. 404, pl. xviii. fig. 3.

Carapace etc. with a short velvet-like tomentum.
Carapace longer than broad, convex, smooth, without distinction of regions. "Cervical" groove broad and shallow.

Front cat into 3 teeth, the lateral ones broad and triangular, the middle oue so small and deflexed as to be hardly visible in a dorsal view.

There is no distinct tooth in the apper border of the orbit, but only an angular bulge, to mark the position of the inner supra-orbital angle. Outer orbital angle and sub-orbital lobe not dentiform.

The antero-lateral borders of the carapace are smooth and entire, but as they bend sharply inwards towards the orbits their anterior angle forms a forwardly-directed tooth, the space between which and the outer-orbital angle is concave.

A very small prominence on the postero-lateral border, just behind the branchial or "cervical" groove.

The chelipeds and legs have an uneven surface, but are not really nodular, thoagh both the inner and outer angles of the wrist are strongly pronounced.

The last 2 pair of legs are short and slender, the 4th (last) pair being very little longer than the 3rd; both end in stont claw-like dactyli bat are not at all cheliform.

The abdomen bends in very sharply from the 4th segment, making the ander sarface of the body very'flat.

In the Indian Musenm are a male and a female from the Persian Gulf.

The carapace of the larger of the two is 12 millim. long.
Distribution: Indo-Malayan coasts.

12. Dromia (Cryptodromia) ebalioides, n. sp.

Carapace hardly at all tomentose: a few hairs on the borders of some of the leg-joints.

Carapace subcircular with projecting front, convex, its surface closely and crisply granular : not only are all its regions very distiuct
but they are also areolated, the individual areols being convex, subcircular, and particularly well defined. The true cervical groove is present, as well as the branchial groove that generally goes by this name.

Front longitudinally grooved, cut into 3 serrulated teeth of which the lateral ones are broadly triangular, while the middle one is narrow and is more prominent than the others.

Upper border of the orbit very oblique, serrulate, devoid of any tooth to mark the inner supra-orbital angle of the higher Brachyura. Outer orbital angle and suborbital lobe not prominent.

Lateral borders of carapace serrulate, not toothed, though there may be a small granular bulge in front of, and another behind, the branchial groove.

Legs and chelipeds crisply granular, the chelipeds and first two pair of legs being also nodular.

Last 2 pair of legs very slender, hardly half the length of the first 2 pair, ending in hook-like dactyli, not cheliform.

First four abdominal terga with some symmetrical granular sculpture, the other three granular but not sculptured.

Three specimens, a male and 2 femules, from Karáchi : the carapace of the largest is 7 millim. long and 8 millim. broad.

This species, and the one following, show the transition to Petalomera, having a granular carapace, on the dorsal surface of which the true cervical groove is as plain as the brauchial groove that is commonly called "cervical."

13. Dromia (Cryptodromia) Gilesii, n. sp.

Closely related to D. sculpta, Haswell.
Carapace etc. without tomentom : a few hairs on some of the legjoints.

Carapace pentagonal, convex, its greatest length about equal to its greatest breadth, the greater part of its surface covered with vesiculons granules: not only are all the regions very distinct, but they are also areolated-the areolæ however not being so individually convex as they are in D. ebalioides. The true cervical groove is present as well as the branchial groove.

Front cat into 3 triangular teeth, of which the middle one is the smallest and is on a lower plane and obliquely deflexed.

Upper orbital border very oblique: a hardly noticeable angulation -not a distinct tooth-marks the true inner supra-orbital angle. Outer orbital angle not prononnced. Suborbital lobe dentiform bat inconspicuous.

Antero-lateral borders of the carapace cut into 5 small granular
lobules or tubercles, of which only 2 belong to the true antero-lateral border, the other 3 being on the subhepatio border and at the onter angle of the baccal cavern.

A granular tabercle on the postero-lateral border, jast behind the "cervical" groove.

Legs and chelipeds crisply granular, the chelipeds and first 3 pair of legs being also nodular: the nodules on the carpal joints being prominent and acute.

Last 2 pair of legs very slender, hardly half the length of the first 2 pair, ending in hook-like dactyli, not cheliform.

All the abdominal terga are symmetrically sculptared and granalar.
In the Indian Musenm are 12 specimens, from off the Malabar coast, 29 fathoms.

The carapace of an egg-laden female is 8 millim. long and $8 \frac{1}{2}$ millim. broad.

This species is easily distingaished from D. ebalioides (1) by the sharply pentagonal carapace and less-completely isolated areolm, (2) by the much more prominent front, (3) by the antero-lateral borders being broken by irrregalar tabercle-like lobules, and (4) by the more abandant sculptare of the abdominal terga: in everything bat the form of the meropodites of the chelipeds and first pair of legs it strongly resembles Petalomera.

Subgenus Petalomera; Stimpson.
Petalomera, Stimpeon, Proc. Ac. Nat. Sci. Philad. 1858, p. 226 : Ortmann in Bronn's Thier Reich (loc, cit.) p. 1155 (name only).

Petalomera closely resembles Oryptodromia, especially those species (e.g. Oryptodromia ebalioides and Gilesii) in which the carapace is granular and has the cervical and branchial grooves both well developed; and, indeed, only differs from Oryptodromia in having the apper border of the meropodites of the chelipeds and first, or first two, pair of legs produced to form a crest so high and thin as to give the joint a petaloid shape.

As in Oryptodromia the sternal grooves of the female are widely separated, and end on the second segment of the sternum. As in Cryptodromia lateralis, there is a small epipodite to the chelipeds.

There can be little doabt that, as Bouvier (Bull. Soc. Philomath. Paris, 1895-96, p. 52) has remarked, Petalomera is a form slightly more primitive than Dromia.

14. Dromia (Petalomera) granulata, Stimpson.

Petalomera granulata, Stimpson, Proc. Acad. Nat. Sci. Philad., 1858, p. 240. J. II. 19

Petàlomera granulata var. indica, nov.
Carapace etc. hardly at all hairy: edges of the legs with some hairs.

Carapace a little longer than broad, convex in both directions, with numerous unevenly distributed vesiculous granules : all the regions are distinct, bat are not all equally well defined. The cervical and branchial grooves are both present.

Front dorsally grooved in the middle line, cat into 3 serrulate toeth, of which the lateral ones are large and triangular, while the middle one is small and is on a much lower plane.

Upper border of orbit serrulate: a tooth near its middle marks the true inner supra-orbital angle. Oater orbital angle pronounced bat not dentiform. The saborbital lobe forms a granular tubercle or denticle.

Antero-lateral borders of the carapace cut into 3 granular teeth, the first being subhepatic.

Chelipeds very mach more massive than the legs: they and the first pair of legs have the merus petaloid, owing chiefly to the thin expanded crest-like apper border of that joint. The merus of the next pair of legs is not petaloid, though its apper border is sharp. In the chelipeds the inner border of the wrist and the apper border of the palm are prominent and, like the apper and outer sarfaces of those joints, are granular: there are also two sharp tabercles at the distal end of the outer surface of the wrist.

The first two pair of legs have a few small granules on some of the joints.

The last two pair of logs are slender and end in small claw-like dactyli, which are opposed to a very small spine at the end of the corresponding propodites: the last pair of legs is very slightly longer than the penultimate pair.

In both sexes the abdomen has a convex ridge down the middle line and the 2nd-5th terga have a few scattored granules on their surface.

The largest specimen is slightly over 15 millim, long, and is 15 millim. broad, but in young specimens the carapace is more elongate.

Colours of fresh spirit specimens: yellow with some reddish markings.

In the Indian Maseum are 22 specimons, from the Andamans and from off Ceylon 28 and 34 fathoms.

This variety is to be distingaished from P. granulata only in not haring the meras of the second pair of legs (3rd pereiopods) petaloid.

From P. pulchra Miers (Zool. H. M. S. "Alert" p. 260, pl. xxvii. fig. A), it differs only in baving a tooth on the sapra-orbital border,
which border is serrulate not entire; in having small spines opposed to the dactyli-at the end of the propodites of the last two pair of legs; and in being more granalar.

Psbudodromil, Stimpson.
Pseudodromia, Stimpson, Proc. Acad. Nat. Soi. Philad. 1858, p. 226 : Henderson, Challenger Anomura, p. 15: Ortmann in Bronn's Thier Reich V. ii., Arthropoda, p. 1155.

Homalodromia, Miers (nec Homolodromia A. M. Bdw.), Zool. H. M. B. Alert, p. 653.

Differs from Dromia in the following particulars :-
The carapace is more elongate : the efferent branchial channels are defined by ridges.

The fourth (last) pair of legs are as long as, or even longer than, the first two pair.

The sternal grooves of the female end in two tabercles placed close together near the bases of the chelipeds.

The front is variable : it may be cat into 3 teeth as in most species of Dromia, or may be bilobed, or may consist of a single triangular tooth.

Distribution: Cape of Good Hope, Seychelles, Indian Seas.
N. B.-In Dromia cranioides, Dromin wnidentata and Cryptodromia tuberculata the last pair of legs are very little shorter than either of the firat two pair.

Key to the Indian species of Pseudodromia.

I. Front cat into 2 teeth, each of which is fased at base with
the tooth of the prominent sapra-orbital margin; so that
the front appears to be formed of two divergent lobes each

of which has both its angles acutely prodaced

II. Front in the form of a single triangalar tooth ...

15. Pseudodromia quadricornis, n. sp. ?

Perhaps identiosl with "Homalodromia" Coppingeri, Miers, loc. cit. pl. L. fig. B.
Carapace etc. tomeutose: a line of pecaliarly long silky hairs forms a fringe or false anterior border to the carapace, behind the deflexed front.

Front deflexed, dorsally grooved in the middle line, cat into two broad teeth, each of which is fused at base with a broad sapra-orbital tooth; so that the front appears to consist of two large lobes, each of which has its anterior edge concave and its antero-lateral angles acately produced.

Carapace in the adalt longer than broad, slightly convex from side
to side, almost flat fore and aft behind the line of long hairs that marks the frontal declivity : its surface, when denuded, is quite smooth : only the branchial or "cervical" groove and the cardiac region are distinctly marked.

Lateral borders of carapace entire, except that there may be a tiny denticle behind the branchial groove.

Oater orbital angle dentiform. Sub-orbital lobe dentiform, deflexed.

Chelipeds and legs comparatively slender, the chelipeds shorter and hardly stouter than the legs. Two acute tabercles on the outer surface of the wrist.

Fourth (last) pair of legs little slenderer and about as long as either of the first two pair, ending in a slender claw-like dactylus to which a spinule at the end of the propodite is opposed.

Third pair of legs not less stout than, but only about half the length of, the first two pair; ending in a claw-like dactylus.

Length of carapace of an adult female 7 millim., greatest breadthin front of the branchial groove - 6 millim.

Five specimens, representing adults of both sexes, from off Ceylon 34 fathoms, and from the Pedro Shoal (off Malabar coast) 20 fathoms.

16. Pseudodromia integrifrons, Henderson.

Pseudodromia integrifrons, Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 406, pl. xxxviii, figs. 7-9.

The front is entire and subacute, without any trace of lateral teeth. No supra-orbital tooth. Outer orbital angle poorly marked. The lower orbital margin is formed simply by the antennal peduncle. Chelipeds without any teeth or tubercles. The carpus of the third pair of legs has a prominent lobe at its distal end, anteriorly. Dactylus of fourth (last) pair of legs straight : its propodite with 3 spinules at its far end.

Loc. Taticorin.
No specimens in the Indian Museum.
Conchecetes, Stimpson.
Conchoscetes, Stimpson, Proc. Acad. Nat. Sci. Philad. 1858, p. 226 : Ortmann in Bronn's Thier Reich, loc. cit. (name only).

All parts, except the dactyli and tips of the fingers covered with a close velvet-like tomentum.

Carapace not elongate in the adult, dorsally quite flat, subpentagonal in outline.

Front cut into 3 teeth, of which the middle one is on a very much lower plane (and is much smaller) than the others.

Palate well delimited from the epistome. Efferent branchial channels well defined.

Chelipeds in the male much more massive and much longer than any of the legs.

The third pair of legs though shorter are not less massive than the first 2 pair, and end in a powerfal talon like dactylus. The fourth (last) pair of legs are short and slender.

The sternal grooves of the female do not meet; they end in tabercles on the second segment of the sternum, between the bases of the 2nd pereiopods.

The branchial formula and the number and disposition of the epipodites are exactly the same as in Dromia Rumphii.

17. Conchacetes artificiosus (Fabr.).

Dromia artificiosa, F'abricius, Ent. Syst. Suppl. p. 360.
Cancer artificiosus, Herbst, Krabben, III. iii. 54, pl. lviii. fig. 7.
Conchoecetes artificiosus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 240 : Henderson, Trans. Linn. Soc. Zool. (2) V. 1893, p. 407.

Dromia conchifera, Haswell, P. L. S., N. S. Wales, VI. 1881-2, p. 757, and Cat. Austral. Orůgt. p. 141, pl. iii. fig. 4.

Carapace etc. with a dense short velvety tomentum.
Carapace pentagonal, with the posterior border of the pentagon curved, its dorsal surface quite flat, its greatest length (in the adult) about equal to its greatest breadth, its regions all well defined by grooves, the cervical and branchial farrows both equally well cat. There are sometimes a few granules near the borders of the carapace.

Front out into 3 teeth with granular edges, the middle tooth being smaller and on a much lower plane than the others.

Upper border of orbit very oblique: a granular spine or tooth marks the true inner supra-orbital angle of higher Brachyura. Oater border of orbit apparently wanting, but on denudation a concave row of granules is found there. Sub-orbital lobe granular and dentiform.

On the lateral borders of the carapace ave usually two teeth, one immediately behind the cervical groove, the other immediately behind the branchial groove: one (the posterior) or both of these teeth may be nearly worn away, but usually they are both very distinct. Between the first spine and the orbital tooth is a (sometimes broken) row of granules, and between the same spine and the outer angle of the buccal cavern is a row of granular tabercles : the surface of the subhepatic region between these two rows of granules may, when denuded, be granular or not.

The chelipeds of the adult male are, as in Petalomera, much more
massive, compared with the legs, than is nsual among the Dromiidse : they are also much longer than any of the legg. The outer (exposed) surfaces of all the joints are more or less granalar, some of the granules on the palm being very large and visible without denudation: in addition, the upper border of the arm is denticalate, tinere are 2 coarse tubercles at the far end of the outer surface of the wrist, and 2 on the palm just behind the finger-joint.

The first 3 pair of legs are short, and some of their joints are granular and bave a tendency to be nodular, a nodule on the carpus being very constant. Of these legs the 3 rd pair ends in a characteristic stont talon-like dactylus the tip of whioh bends towards a stout lobe at the proximal end of the posterior border of the propodite.

The 4th (last) pair of legs are very slender : they reach to the far end of the carpus of the 3rd pair, and ond in a tiny claw-like dactylus.

In both sexes the abdomen has a convexity along the middle line.
This species protects itself with the valve of a Lamellibranch shell, which is held, as in a frame, by the strong hook-like dactyli of the third pair of legs.

In the Indian Museoum are 24 specimens, representing both gexes, from the Andamans, from varions parts of the Coromandel coast between Taticorin and the Hooghly Delta, and from off the Indus Delta up to a depth of 62 fathoms. It appears to prefer a muddy bottom. There are also 2 specimens from Hongkong.

Distribution : coasts of India, China; and Australia.

18. Conchoecetes andamanicus n. sp.?

Three small specimens from the Andamans differ from adalts in the following particulars:-

The carapace, though not flatter dorsally, is more depressed and therefore much shallower.

The front is cut into 2 triangular teeth, between which is a ting denticle not visible in a dorsal view.

There is no spine or tooth on the apper border of the orbit.
The antero-lateral borders though granular are thin and overhanging, and are withoat any traces of spines or teeth behind the cervical and branchial grooves. The subhepatic regions are granular bat are not bounded by distinet rows of granules.

Instead of two blant tabercles behind the finger-joint, there is one large sabacnte tabercle.

Spherodromin, Alcock.
Spherodromia, Alcook, Investigator Deep-Sea Brachyura, p. 16.

All parts except the tips of the fingers and of the dactyli are tomentose.

Carapace not elongate, subglobose. Front broadly triangular, somewhat deflexed, dorsally grooved, rather deeply notched at tip (of the Dynomene-type).

Palate well delimited from the epistome: efferent branchial channels defined by ridges.

The chelipeds and legs are as in typical Dromia, except that the chelipeds are not at all nodose.

The sternal grooves of the female are wide apart and do not reach to the level of the genital openings, exactly resembling those of Dynomene.

Though the gills are phyllobranchim the individual gill-plates are narrow and thick and are undoubtedly transitional.
19. Spherrodromin Kendalli, Alcock \& Anderson.

Dromidia Kendalli, Alcook \& Anderson, J. A. 8. B. Vol. LXIJI. pt. 2, 1894, p. 175 : Illustrations of the Zoology of the Investigator, Crustaces, pl. xxiv. figs. 1, 1 a.

Dromia (Aphærodromia) Kendalli, Alcook, Investigator Deep-Sea Brachyara, p. 16.

Carapace etc. covered with a dense, yellowish, velvet-like tomentum.

Carapace sub-circular, globose, smooth except for a few vesiculous granules on the pterygostomian regions and on the posterior part of the sidewall, only the cardiac region and the branchial, or "cervical" groove are marked: [The true cervical groove is not distinguishable on the dorsum of the carapace].

The front consists of two triangular teeth. The upper border of the orbit is oblique, but there is no tooth-only a break, or fold, better visible from below than from above-to mark the true inner supraorbital angle. The outer angle of the orbit is not defined. The suborbital lobe is broadly and bluntly triangular.

Lateral borders of the carapace entire, the antero-lateral borders subcristiform and ending at the sub-orbital lobe.

The external maxillipeds when closed leave a gap between their anterior border and the edge of the epistome.

Vesiculous granules are present on the edges of the arms, on the upper and outer surfaces of the wrists, and everywhere on the hands except on the lower part of the inner surface.

The last two pairs of lege are about equal and are about half as long as the other legs : each ends in a small claw-like dactylus which is opposed to two or three tiny spinales at the end of its propodite.

A single female, with the carapace 18 millim. in diameter from the Bay of Bengal, off Nellore coast, 112 fathoms.

20. Sphærodromia nux, n. sp.

Differs from Sphesrodromia Kendalli only in the following part-iculars:-

The carapace though of the same subglobular shape is a little broader than long; and the antero-lateral border, instead of running to the orbital angle, runs down without interraption to the outer angle of the buccal cavern. The surface of the carapace, especially in its anterolateral parts, is finely granular under a lens. The sub-orbital lobe is neither dentiform nor prominent.

A male and a female from the Galf of Martaban, 70 fathoms.
The carapace of the female is nearly 10 millim. long and nearly 11 millim. broad.

Tribe HOMOLIDEA.

Family I. HOMOLID压.
Key to the Indian genera of the Family Homolidæ.
I. Carapece ovoid. External maxillipeds quite pediform : terminal joint of the eye-stalk very much longer than the basal joint, which is obsolescent : daotylus of last pair of legs very small, and shatting down on the slightly expanded distal border of the propodite

Hypsophers.
II. External maxillipeds sabpediform, the meras, thongh not a broad joint, having its outer angle distinctly dilated: terminal joint of the last pair of legs shatting against the posterior border of the propodite :-

1. Carapace subquadrilateral, or urn-shaped, not depressed; its hepatio spine some distance behind the level of the supra-orbital spine : the terminal joint of the eye-stalk is not always quite as long as the basal joint Homora.
2. Carapace urn-shaped, depressed ; its hepatic apine almost on the same level as the sapra-orbital spine : the terminal joint of the eye-stalk is a little longer than the basal joint Paboxolopats.

Homola, Leach.
Homola, Leaoh, Trans. Linn. Soc., Vol. XI. 1815, p. 324, and Zool. Miscell. Vol. II. p. 82, pl. lxxxviii : Latreille, Nouv. Dict. d'Hist. Nat. XV. 1817, p. 277, and in Cavier's Regne Animal, ed, 1829, p. 67 : Desmarest, Consid. Gen. Crast. p. 133 : Riseo, Hist. Nat. Farop. Merid. Vol. V. pp. 84-35: Roux, Crast. de la Mediterranée text of pl. vii : Milne Fdwards, Hist. Nat. Crust. II. 181 : deHaan, Fann. Japon. Crust. p. 105 : Dana U. 8. Fixpl. Exp. Crust. pt. I. p. 403 : Holler, Crust. Sudl.

Earop. p. 148: Hendereon, "Challenger" Anomara, p. 18: Ortmann, Zool. Jahrb. Syat. etc. VI. 1892, pp. 540 and 542 and in Bronn's Thier Reich, V. ii. Arthropoda, p. 1156: A. Milne Edwards and Bouvier, "Hirondelle" Braohyures et Anomares (Monaco 1894) p. 60 : Alock, Investigator Deep.Sea Brachyara, p. 6.

Carapace deep, longer than broad, quadrilateral or urn-shaped, with deep vertical sides, the gastric region well demarcated and occapying the anterior half of the carapace, the lines anomarica distinct and dorsal.

Front narrow, forming a rostrum, which is either entire or bifid at tip and has a spine, often of large size, on either side of its base.

The orbits are quite incomplete and do not even conceal the eyestalks, and the eyes, which project far ontside them, are retractile against the sides of the carapace. The eye-stalks are long and are composed of two joints, a slender basal joint, and a swollen terminal joint that carries the eye, the terminal joint (with the eye) being nearly as long as the basal joint.

The epistome is fairly or very distinctly marked off from the palate. The expiratory canals are very well defined. The external maxillipeds are subpediform.

The chelipeds are rather slender and generally somewhat sping. The legs are long and more or less compressed and sping, the last pair are subcheliform, but have the propodite dilated near the basal end and never twice the length of the dactylus.

The abdomen of both sexes consists of seven separate segments and is rather broad.

The branchial formula is as follows :-

Somites and their appendages.	Podobranchim.	$\underset{\text { Anterior }}{\text { Arthrol }}$	ranchim. Posterior.	Pleurobranchiæ.	
VII.	0 ep.	0	0	0	ep.
VIII.	$1+$ ep.	0	1	0	$2+$ ep.
IX.	0 ep.	1	1	0	$2+$ ep.
X.	0 ep.	1	1	0	$2+\mathrm{ep}$.
XI.	0 ep.	1	1	$1=$	3+ep.
XII.	0 ep.	1	1	$1=$	8+ep.
XIII.	0	1	0	$1=$	2
IIV. ..	0	0	0	0	0
	$1+6$ ep.	5	5	$3=$	14+6

Distribution: West Indies and Atlantic coasts of N. America, Azores and coast of Portugal : Mediterranean : East Indian Seas from Cape Comorin to the Philippines.

In my Account of the Investigator Deep Sea Brachyura, I have proposed the following subdivision of the genus Homola :-

1. Homola. Carapace square-cut, its broadest part being in front, across the middle of the gastric region: the linea anomurica rather J. II. 20
inconspicnous, keeping close to the lateral border. Rostrum a noncylindrical bifid tooth, with a smaller spine on either side of its base. 2nd joint of antenna-peduncle having its antero-external angle produced to form a spine. Palate distinctly delimited from the epistome everywhere except in the middle line. The last pair of legs reach to the end of the carpus of the preceding pair.

Types H. barbata (Herbst) and H. andamanica, Alcock.
Homolax. Carapace urn-shaped, its greatest breadth being behind, across the middle of the branchial regions: the linea anomurica conspicnons, running well inside the lateral border. Rostrum as in Homola. 2nd joint of antenna-peduncle having its antero-external angle acnte, but not spiniform. Palate as well demarcated from the epistome in the middle line as it is elsewhere. The last pair of legs reach beyond the end of the carpus of the preceding pair.

Type H. megalops, Alcock.
Paromola Wood-Mason. "Carapace decidedly macrurous in form," its greatest breadth being behind : the linea anomurica very conspicaons and well inside the lateral border. Rostrum a simple cylindrical spine of large size, flanked on either side by a single spine of equal or greater size. 2nd joint of antenna-peduncle not produced or specially acate at the antero-external angle. Palate everywhere well demarcated from the epistome. The last pair of legs not reaching beyond the end of the merus of the preceding pair.

Types H. cuvieri, Roux and H. profundorum, Alcock.

Subgenus Homola.

21. Homola andamanica, Alcock.

Homola andamanica, Alcook, Investigator Deep-Sea Brachyura, p. 7: and Illostrations of the Zoology of the Investigator, Crustacea, pl. xl. fig. 1.

This may, very possibly, prove the same as Homola orientalis Henderson, though it cannot be quite reconciled with the description, still less with the figure, of that species.

In any case it is probably only a variety of Homola barbata, with 3 good specimens of which-representing both sexes-it has been compared. The only differences between it and H. barbata are the following :-

The eyes are more reniform. The second spine of the lateral border is just behind the hepatic region. There are spines on the posterior border of the meropodites of all four pairs of walking legs.

Carapace elongate-subquadrilateral, its greatest breadth is across the middle of the gastric region, behind which point its sides are quite straight and vertical : it is well calcified, and, like all other parts except the antennary flagella, is covered with short soft but stiff hairs that are not thick set enough to form a coat of concealment.

Rostrum a depressed grooved tooth, bifid at tip. Four spines on the anterior border of the carapace, namely, one on either side of the rostrum, one at either supra-orbital angle.

Lateral borders of dorsum of carapace straight, very slightly convergent, spinate; the first spine, which stands alone on the hepatic region, is of pre-eminent size, the second though much smaller than the first is much larger than any of the others.

Gastric region very well demarcated, armed with nine large spines -three in a triangle on either median area, one on either lateral area, and one on the hinder part of the central area.

Some spines on the subocular, subhepatic, and pterygostomian regions-largest on the subocular region, where they are definitely arranged in two crescentic rows. Two spines, one beside the other, on the carapace outside the antenna-peduncle, in addition to the spinuliform suborbital angle.

Eyes somewhat reniform.
Chelipeds slender, but distinctly stouter than the legs, more hairy than the carapace, especially along the edges of the joints. Upper and lower borders of arm spiny; wrist with rows of spines on the outer surface and a spine or two at the inner angle; lower border of hand spiny, upper border of hand denticulate, cutting edges of fingers sharp, entire.

Legs compressed, their edges plumed with short bristles, with long bristles interspersed. The second and third pair, which are a dactyllength longer than the first, are not quite $2 \frac{1}{2}$ times the length of the carapace : in all three pairs both edges of the merus are armed with stont spines-at least in the distal half, and the posterior border of the propus and dactylus with compressed articulated spines which are distant and acicular on the propus but stout very regular and close-set on the dactylus.

The subcheliform fourth pair of legs reach very slightly beyond the end of the carpus of the preceding pair : the merus has 3 or $\frac{1}{4}$ spines on the lower border and a terminal spine on the upper border, the clawlike dactylus closes against a bunch of spines on the near end of the propas.

In the Indian Musenm are a male and female from the Andaman Sea, 79-90 fathoms; the carapace of the female is about 27 millim. long, and about 21 millim. wide.

Subgenus Homolax.

22. Homola megalops, Alcock.

Fromola megalops, Aloock, Ann. Mag. Nat. Hist., May 1894, p. 408 : Illastrations of the Zoology of the R. I. M. S. 'Inveetigator,' Orastaces pl. xiv. figes. 1, la Inveatigator Deep.Sea Brachyura, p. 9.

Carapace urn-shaped, its greatest breadth is across the middle of the branchial region; its sides, and still more the spinulate lateral borders of its dorsum, are elegantly curved; the hairs that cover it are so inconspicuous as to be recognizable only with a lens.

Rostrum a depressed grooved tooth, entire, or emarginate at tip. Four spines on the anterior border of the carapace arranged as in \boldsymbol{H}. barbata.

The only enlarged spine of the lateral border stands alone on the hepatic region.

Nine spines on the gastric region-two immediately behind the spines at the base of the rostrum, the other seven in an open S-shaped curve across the middle of the region.

A single row of spines on the subocular region, which region is remarkably hollowed for the reception of the retracted eye. Two spines, one above the other, on the carapace beside the antenna-peduncle, in addition to the blantly-dentiform suborbital angle.

Eyes reniform, very large, their major diameter being one-sixth the breadth of the carapace.

Chelipeds slender, their arms and wrists distinctly slenderer than the meropodites of the legs : in the adult male they do not reach halfway along the merus of the first pair of legs : they are covered with a short inconspicuous velvet, with hardly any long bristles on the edges of the joints : they are armed much as in H. barbata, but the upper border of the hand is spiny and the lower border faintly denticulate. The fingers, which have a sharp entire cutting-edge, are as long as the rest of the hand.

The legs have the surface-especially the dorsal surface-of most of the joints covered with a close short velvet, bat have few or no bristles along their edges. The 2nd and 3rd pair, which are nearly a dactylus longer than the first, are nearly three times as long as the carapace : the subcheliform 4th pair reaeh beyond the end of the carpus of the preceding pair. The first three pair have the anterior edge of their greatly compressed meropodite closely spinate, and the posterior edges of that joint and the ischinm closely spinulate; their last three joints have the edges smootb, except for a few smail jointed spinules at the base of the posterior border of the dactylus. The last pair of legs have
the posterior edge of their subcylindrical meropodite closely spinate. and have only a single terminal spine on the upper edge, the carpus has a strong terminal spine on its posterior border, and the propus has a salient group of spines behind the middle of its posterior border forming a sabcheliform stump for the serrated posterior edge of the claw-like daotylus.

Colour in life salmon-pink.
Andaman Sea, 188-220 fathoms, a male and a female; 370-419 fathoms, 3 males and 3 females. Bay of Bengal, off Conomandel Coast, 145-250 fathoms, a male and a female. Gulf of Manár, off Colombo, 142-400 fathoms, 2 young males.

Dimensions of carapace of a full-grown specimen 41 millim. long, 36 millim. broad.

The gills are fourteen in number on either side, arranged as in Homola barbata, exclusive of a quite radimentary posterior arthrobranch to the penultimate pair of legs.

Subgenus Paromola.

23. Homola profundorum, Alcock and Anderson.

Homola profundorum, Alcock and Anderson, Ann. Mag. Nat. Hist. Jan. 1899, p. 5: Alcook, Investigator Deep-Sea Brachyura, p. 10, pl. i. fig. 2.

Carapace very decidedly macruriform, deep, ovoid-triangular, broadest abaft the middle of the branchial region, tapering to an acntelyspiniform rostrum of which the length is about a third that of the rest of the carapace. Diverging from either side of the base of the rostrum is a spine of similar form and size. The only other elevations on the carapace are a hepatic spine just behind the hollow for the retracted eye, an antennal spine just outside the antennal base, and a blunt denticle near the middle of the ill-defined lateral border.

The gastric region is well delimited, and the linea anomurica is broad conspicuous and dorsal.

The stout cylindrical terminal joint of the eye-stalks is longer than the slender basal joint, the eyes are of good size, well pigmented, and hemispherical.

The chelipeds are slender but are stouter than the legs; the arm has the outer lower border spinate and, on the upper border, a few spinules and a strong terminal spine; both the inner and the outer angles of the wrist are armed with a strong spine, the fingers are much shorter than the hand and have the cutting-edge entire.

The legs are slender and subcylindrical, the 2nd and 3rd pair, which are slightly longer than the first, are at least three times the length of the carapace. In the first 3 pair there are a few distant
spines and a strong terminal spine on the anterior border of the meras, a few articulating spinules at the far end of the posterior border of the propodite, and a comb of articulating spines along the posterior border of the dactylus-the last joint being but half the length of the last bat one. The dorsal fourth pair of legs are far slenderer than the others and do not reach the end of the meras of the preceding pair: their propodite is triangular, owing to the expansion of its posterior border, and opposes a sharply-serrated edge to the less strongly toothed posterior border of the short dactylus-the parts being cheliform rather than subcheliform.

The body and appendages are coated with very short distant bristles which do not conceal the surface: there are some longer and thicker bristles along the edges of the chelipeds, and a very few scattered hairs along the edges of the legs.

Three young females from off the Travancore coast, 430 fathoms.
The carapace of these is about 13 millim. long, and about 9 millim. in greatest breadth.

Paromolopsis, Wood-Mason.
Paromolopsis boasi, Wood-Mason, Ann. Mag. Nat. Hist., March, 1891, p. 288. Paromolopsis, Alcock, Investigator Deep-Sea Brachyara, p. 11.

Resembles Homola but differs in the following important part-iculars:-

The carapace is "more brachyurous:" it is urn-shaped and depressed, its sides being far from vertical and being overhung by the sharply defined lateral borders. The hepatic region is elongate and advanced, so that the hepatic spine is on a level with the spines of the anterior border, and helps to form a very decided false-orbit. The buccal cavern is scarcely broader in front than behind.

In other respects it agrees with Homola and more particularly with the subgenus Homolax.

The branchial formula is the same as that of Homola.

24. Paromolopsis boasi, Wood-Mason.

Paromolopsis boasi, Wood-Mason, Ann. Mag. Nat. Hist., March 1891, p. 268 and fig. 5 : Alcock, Investigator Deep-Sea Brachyura, p. 11.

Every exposed surface of the body and appendages, excepting only the flagella of the antennæ, is covered with an even, velvet-like, tomentum.

Carapace ending in a short triangular rostrum with an upturned tip, its greatest breadth, which is across the middle of the branchial regions, is equal to its length without the rastrum. Unlike the species
of Homola, the lateral border is well-defined throughout, is carinated, is co-extensive with the length of the carapace, and ends in a large triangular hepatic spine the tip of which is on a level with the tips of the spines of the anterior border: these are four in number, one on either side of the rostrum and one at either outer orbital angle.

There is an antennal spine and spinule, there are some definitelyplaced nodular swellings on the well defined gastric region, and the surface of the denuded carapace is granular, but there are no spines other than those mentioned.

The swollen terminal joint of the eyestalk is rather longer than the slender basal joint : eyes of good size, well pigmented, hemispherical, retractile into a very decided hollow in the front wall of the hepatic region.

The 2nd joint of the antenna-peduncle is not produced or acute at the antero-external angle; the antennal flagellum is much longer than the carapace.

Chelipeds (in the adult female and young male) short, just reaching beyond the end of the carpus of the first pair of legs : the arm is slenderer than the corresponding joint of the first three pair of legs : the fingers are longer than the hands: none of the joints are spinate.

The second and third legs, which are longer than the first by their dactylus, and longer than the fourth by their merus and dactylus, are 3 times the length of the carapace. In the first three pair of legs the anterior border of the meropodite is armed with large spines, but the other joints are unarmed : the dactylus is slender, curved, and of great length, being hardly shorter than the preceding joint.

In the subcheliform, dorsal, fourth pair the anterior border of the merus ends in a spine and the posterior border of the merus is spiny throughout, the propus is much dilated and toothed at its basal angle posteriorly, so as to be l-shaped and has one or two spines on the undilated portion of its posterior border, and the dactylus is short and is toothed along the posterior border.

The abdomen of the male consists of seven segments.
The carapace of an adult female is 45 millim. long and $43 \cdot 5$ millim. broad.

The colours in life vary from red to bluish-pink.
In the Indian Museum are a largefemale and three young females from off the Andamans, 480-500 fathoms, 498 fathoms and 561 fathoms; a young male, a large adult female and four young females from off the Travancore coast, 406 and 430 fathoms; a large female with eggs from off the Laccadives, 360 fathoms; and a young female from off Colombo, 597 fathoms.

Hypsophrts, Wood-Mason.

Hypsophrys superciliosa, Wood-Mason, Ann. Mag. Nat. Hist., March, 1891, p. 269.

Hypsophrys, Alcook, Investigator Deep Sea Brachyara, p. 12.
Carapace deep, longer than broad, quadrilateral or ovate-oblong, with deep vertical parallel sides, the gastric region well delimited and occupying its anterior half, the linea anomurica dorsal, distinct or indistinct.

Front narrow, forming a simple or bifid rostrum which has a spine on eitīer side of its base.

The orbits do not afford any concealment to the eyes, but form, on either side of the rostrum, a broad concave facet sharply marked off from the rest of the carapace by a ridge that arches round dorsally from the rostrum to the antennal spine : at the npper and inner angle of this facet is a well defined hollow that catches the knee of the 2nd and 3rd joints of the antennulary pedencle when fixed. The ejes are well formed : the terminal joint of the eyestalk is barrel-shaped much as in Homola, but the slender basal joint is short or obsolescent, so that the eyes do not appreciably project beyond the edge of the orbital facet.

The antennules and antennm are identical with those of Homola.
The mouth-parts also are very like those of Homola, but as the outer border of the merus of the external maxillipeds is hardly at all expanded these appendages are even more pediform than in Homola.

Chelipeds slender, spiny, equal. Legs of the first three pair long, with broad compressed meropodites. Fourth pair of legs short, very slender, cheliform, their dactylus, which is many times shorter than their propus, shatting down against and co-terminous with the slightly expanded distal end of the propus.

The abdomen of both sexes consists of seven separate segments.
In general form Hypsophrys resembles Homola barbata, but it differs from Homola in the following particulars :-

1. The ejestalks are like those of Dromia, the long slender bassl joint of Homola being reduced to next to nothing.
2. Though there are no true orbits there are distinct orbital facets, and the homologies of these with the orbits of Dromia-in respect both of conformation and of common use for eyes and anten-nules-are unmistakeable.
3. The external maxillipeds are unequivocally pediform, the merns being hardly broader than the ischium.
4. The fourth (last) pair of legs have the subchelæ or chelæ quite different in form : the propodite is long and is slightly expanded at its distal end, and the dactylus is a minute joint, ever so much smaller
than the propodite, that shats down against the distal border of the latter like the blade of a knife.

The branchial formula of Hypsophrys is exactly the same as that of Homola.

25. Hypsophrys superciliosa, Wood-Mason.

Hypsophrys superciliosa, Wood-Mason, Ann. Mag. Nat. Hist., March 1891, p. 269 : Illustrations of the Zoology of the "Investigator," Crust. pl. xiv. figs. 4, 4a, 1895 : Alcock, Investigator Deep Bea Braohyura, p. 14.

Rostrum simply pointed. Linea anomurica rather indistinct.
Four small spines or teeth on the anterior (orbital) border of the carapace, two being far apart at the base of the rostrum and one at either outer orbital angle. Two, or all four, of these teeth may be obsolescent or obsolete.

Lateral borders of dorsum of carapace not defined, except by a single isolated spine on the hepatic region. Gastric region sharply subdivided into three subregions, of which the lateral are somewhat nodular. Two or three spines on the subhepatic and suborbital region, the innermost of which is "antennal," also sometimes a few spinules.

Eyes well formed and facetted, but pale. Antennal flagella about half again as long as the carapace.

The pediform external maxillipeds have their surfaces and edges devoid of spines.

Chelipeds slender, but mach more massive than the legs, about half a hand-length shorter than the first pair of legs in the adult male : spines and spinules in rows on edges and on both inner and outer surfaces of arms, wrists and hands : fingers about three-fourths the length of the palm.

The second pair of legs, which are slightly longer than the first and third and considerably more than twice the length of the fourth, are slightly more than three times the length of the carapace.

In the first three pair the meropodites are compressed, with the anterior border spiny and the posterior border much less strongly and profusely spiny; the other joints are slender and unarmed, except for a few articulating spinelets at the far end of the posterior border of the propodite and in the basal half of the posterior border of the dactylus; the dactylus is slightly shorter than the propodite.

The fourth (dorsal) pair are very slender and are unarmed except at their cheliform ending: their propodite is many times longer than the dactylus.

The terminal joint of the male abdomen is bluntly triangalar. J. II. 21

There are some soft bristles on the chelipeds, and a few on the legs, and some very short and inconspicuous hairs on the carapace.

Colours in life, pink.
The carapace of a large egg-laden female is 19 millim. long and 15 millim. broad.

This species has frequently been taken in the Laccadive Sea and in the sea to the north of the Laccadives at depths ranging from 740 to 931 fathoms, on soft bottoms.

In the Indian Museam are more than $\mathbf{8 0}$ specimens representiag both sexes, both adult and in young stages.

26. Hypoophrys longipes, Alcock and Anderson.

Hypsophrys longipes, Aloock and Anderson, Ana. Mag. Nat. Hist, Jan. 1899, p. 0 : Alcook, Investigator, Deep-Sea Brachyora, p. 15, pl. i. fig. 1.

Rostrum deeply bifid. Linea anomarica distinct.
Four large spines on the anterior border of the carapace-two close together at the base of the rostrum, one at either orbital angle.

Lateral borders of dorsum of carapace well defined, spinalate; the ridge on the side-wall of the carapace that defines the branchial regions anteriorly is also spinulate. A row of spines on the hepatic region, the largest of which is on the lateral border of the carapace and has a spine dorsad of i.

Gastric region obscurely subdivided, each lateral subregion is armed with 5 or 6 large spines, while on the median region there is a central spine sometimes followed by 2 row of spinules. Subhepatic and suborbital region with namerons large spines, one of which is "antennal."

Eyes well pigmented. Antennal flagella more than twice the length of the carapace.

Rows of spinales on the exposed surface of the ischium meras and exognath of the external maxillipeds, and a row on the basal joint of the antennules.

Chelipeds slender, reaching not far beyond the end of the carpus of the first pair of legs, the arm and wrist not stouter than the meropodites of the first three pair of legs; spinate and spinulate as in the preceding species; fingers as long as the hand.

The second and third pair of legs, which are slightly longer than the first and three times as long as the fourth, are forr times the length of the carapace. In the first three pair of legs the meras is compressed and has its anterior border spinate and its posterior borders spinulate, the posterior border of the propodite carries a few distant articulatiag spinelets, and the dactylus-which is about two-thirds the length of the
preceding joint-has a close comb of articulating spines along its posterior border.

The fourth (dorsal) pair, which are extremely slender, have the posterior border of the merus strongly spinate: the propodite is several times longer than the minute dactylus.

The terminal joint of the male abdomen ends acutely.
Hairs and bristles are sparsely present just as in the preceding species.

The carapace of a large egg-laden female is 38 millim. long and 30 millim. broad.

In the Indian Museum are eleven specimens, representing adults and young of both sexes, dredged off the coast of Travancore at 430 fathoms, on a bottom which, though muddy, was abundantly covered with coral.

Family II. LATREILLID雨.

Key to the genera of the Family Latreillidæ.
I. Carapace aubquadrilateral. Antennm long. All seven
abdominal segments distinct in both sexes

Latreillopgis.
II. Carapace piriform, its anterior portion forming a long suboylindrical "neck." Antennm short. The 4th, 5th, and 6th abdominal segments of the female are fused together Latreillia.

Latreillopsis, Henderson.

Latreillopsis, Henderson, Challenger Anomara, p. 11: Ortmann in Bronn's Thier-Reioh, V. ii. Arthropods, p. 1156.

Carapace subquadrilateral, deepish, with vertical side-walls, not entirely concealing the basal joints of the legs : the regions fairly well indicated. Front of moderate width, ending in a spiniform rostrum on either side of which is a long slender divergent "supra-ocular" spine. Linea anomurica present, most distinct posteriorly.

Eyes as in Latreillia, large and borne free at the end of slender eyestalks of remarkable length. Antennæ long, freely movable from their base; the peduncle slender, cylindrical, and consisting of four joints, as usual.

Epistome well demarcated from the palate. Buccal cavern much broader in front than behind, the efferent branchial channels very well defined. Though the external maxillipeds do not quite meet across the buccal cavern they are distinctly operculiform, owing to the expansion of their merus.

Chelipeds long and slender bat much shorter than the first three pair of legs : their joints, like those of the legs, are cylindrical, and the palm in the male is enlarged and clab-shaped.

Legs slender, the first three pair very long; the fourth pair reduced in length, and sabchelate.

The abdomen in both sexes consists of 7 separate segments.
The branchial formula is exactly the same as that of Latreillia pennifera, and is as follows:-

Distribution : Oriental Seas (Andaman S. and Philippine S.).

47. Latreillopsis bispinosa, Henderson.

Latreillopsis bispinosa, Henderson, Challenger Anomara, p. 22, pl. ii. fig. 3. i.
Carapace longer than broad, shaped much as in Homola : frontal region with three sharp slender spines, the middle one-which is the shortest and is slightly deflexed-being the rostrum, the other twowhich are about a third the length of the carapace and are slightly up-tilted-being placed above the bases of the eje-stalks.

Gastric region tamid, with a tubercle posteriorly and a carved transverse row of tiny tubercles anteriorly. Cardiac region small, tumid, culminating in two tubercles placed side by side or confluent. Branchial regions with an irregular surface, and with one or two tiny spinules on the side wall.

Hepatic regions standing out like a pair of little wings, with two spines-the foremost of which is nearly as long as the rostrum-projecting obliquely forwards from their prominent outer angle, and with one or two small spinales on their ander surface.

Eyestalks nearly as long as the supra-ocular spines. Antennal peduncle about as long as the eyes and eye-stalks combined, the flagellum more than three-fourths the length of the carapace.

Chelipeds and legs slender, cylindrical, practically smooth, except for a spine at the far end of the anterior (extensor) border of the meras.

The chelipeds in the male are just over twice, in the female less than twice, the length of the carapace without the rostrum. In the
female they are hardly stouter than the legs; but in the male they are distinctly stoater, especially as regards the palm, which is clubshaped: the palm is much longer than the fingers.

The first three pair of legs increase in length, gradually bat slightly, from before backwards, the 3rd pair being between 4 and $4 \frac{1}{2}$ times the length of the carapace: the dactyli are long and carved.

The fourth pair of legs are a little longer than the male chelipeds: their last two joints are short, and the dactylus folds down, like a knifeblade, on a donble row of spines along the posterior border of the propodite.

In both sexes the last abdominal tergam is shaped like a spearhead, and the 2nd, 3rd, 4th and 6th terga have an acute tubercle in the middle line.

The carapace of an egg-laden female is 8 millim. long, the same length as that of an apparently adult male.

Colours in spirit yellow, the fingers and eyes dark brown.
In the Indian Museam are two males and a female from the Andaman Sea, 53 fathoms (not the same station as that where Latreillia was dredged).

Distribution: Off the Andamans and off the Philippines.

Latreilifa, Roux.

Latreillia, Ronx, Crust. Medit. pl. xxii. and text: Milne Edwards, Hist. Nat. Crust. I. p. 277 : DeHaan, Fann. Japon., Crust., p. 105 : Heller, Crust. Sudl. Furop. p. 146: Henderson, Challenger Anomura, p. 23 : A. Milne Edwards and Bouvier, Crust. Decap. Hirondelle, Brach. et Anom. (Monaco 1894) p. 59 : Bouvier, Bull. Soc. Philom. 1896, p. 64 : Ortmann in Bronn's Thier-Reich, V. ii., Arthropoda, p. 1156.

Carapace elongate-piriform, not covering the basal joints of the legs, its anterior part prolonged to form a sabcylindrical "neck" at the end of which are the spiniform rostram, lying deflexed between two long slender divergent "sapra-ocular" spines, the eyes, the antennales, and the antennæ. The regions are fairly well indicated, and there is no linea anomurica.

Eyes mach as in Homola, large and borne free at the end of very long and slender basal stalks. Antennom short, of filiform slenderness, freely movable from their base.

Epistome of great length fore and aft, corresponding with the "neck" of the carapace. Buccal cavern well demarcated from the epistome, the efferent branchial channels well defined. External maxillipeds not completely closing the buccal orifice: they have a pediform cast, the ischium and merus being rather narrow and the flagellum coarse.

Chelipeds long and slender, but always mach shorter than the first three pair of legs : all the joints are slender, except the palm, which in one or both sexes is club-shaped. Fingers shorter than the palm.

First three pair of legs very long aud slender; some of their joints are spiny.

Fourth pair of legs more or less reduced in length, subdorsal in position.

The abdomen of the male consists of seven separate segments; that of the female consists of five segments-the 4th, 5th and 6th being fused together.

The branchial formula given by Bouvier for Latreillia elegans, and verified by myself for Latreillia pennifera, is as follows:-

Distribution: Atlantic coasts of North America between 38° and $40^{\circ} \mathrm{N}$. : off the Canaries and Azores: Mediterranean Sea: Bay of Bengal and Andaman Sea: Japanese Seas: New South Wales coast.

28. Latreillia pennifera, n. sp.

Very closely related to L. elegans, Roux.
Carapace smooth, withont spines, though the hepatic regions have a strong bulge: the "neck" is rather slender (equally so in both sexes) and is nearly as long as the rest of the carapace measured in the middle line.

Rostral spine short, acate, strongly deflezed. Supraocular spines as long as the eyestalks, aboat half the total length of the carapace ("neck" included) measured in the middle line; occasionally bearing some tiny secondary spinules.

Antennules slightly longer than the eyestalks: the outer flagellam longer and very mach coarser than the inner.

The chelipeds, which are slightly longer in the male than in the female, are between $3 \frac{1}{2}$ and 4 times the total length of the carapace :
their joints are long, slender, and cylindrical, except the palm of the male, which is club-shaped : there are a few spines on the arm, bat the other joints are smooth : the fingers are not half the length of the hand (palm).

The first three pair of lags, though they increase slightly in length from before backwards, are not very dissimilar in length, the first pair being nearly 8 times the total length of the carapace. All their joints are slender : the merus is spinate, the carpus sparsely spinate, and the propodite is slightly dilated at the far end of the posterior border where there are a few spines.

The last pair of legs are between $4 \frac{1}{5}$ and 5 times the total length of the carapace and reach almost to-in the female even beyond-the end of the carpus of the last pair bort one : the meras is rather sparsely spinate, chiefly on the posterior border, and the propodite is plumed on both sides so as to exactly resemble the vane of a feather : the dactylus is extremely short.

In both sexes the last abdominal segment is shaped like a spearhead: in the female the 2nd and 3rd abdominal terga have a median spine and the 4th has a spine at the proximal end of either lateral border.

Colours in spirit yellow. In life the carapace is reddish with longitudinal stripes of dark red, the eyestalks ohelipeds and legs are closely cross-banded with red, and the eyes are parplish black.

The carapace of an adult female, with eggs, is 11 millim, long.
14 specimens from the Gulf of Martaban, 53 and 67 fathoms, and from off the northern end of Ceylon, 28 fathoms.

A List of the Butterflies of Ceylon, with Notes on the various Species.By Lionel de Nictille, F.E.S., C.M.Z.S., \&C., and Major N. Manders, R.A.M.C., F.E.S.
[Received September 28th. Read November 1st, 1899.]
The Island of Ceylon is so well known that a lengthened description of its peculiarities is unnecessary. It may rongbly be divided into two regions, the low and hill country. The latter comprises the southwest and central portions of the Island exclusive of the south-west coast line, and receives the greater portion of the annual rainfall. The hills rise to $8,000 \mathrm{ft}$., the highest, Pedro Point close to Nuwara Eliya, being $8,200 \mathrm{ft}$. The vegetation from $6,000 \mathrm{ft}$. upwards gradually becomes of a more temperate character. At Nuwara Eliya, 6,000 ft., both tropical and sab-tropical vegetation occurs, the latter preponderating.

The higher forests are very thick, almost impenetrable, always soaking with moisture, and consequently butterfly life is almost absent. In fact, very few butterflies occur from $7,000 \mathrm{ft}$. upwards, the seasons seem to be too cold and damp for them, and even those found at $6,000 \mathrm{ft}$. appear to be passengers from the low country. A few, but very few, are found only in what may be called the apper hill district. The middle and low hill districts from $6,000 \mathrm{ft}$. to 400 ft . are very largely under tea cultivation, but in those few localities where the jungle has been left batterflies abound, and it is remarkable what a number of different species survive in a very limited patch of forest. This part of the Island has, perhaps, been better worked than any other, as it is the home of the planter, many of whom take an interest in entomology. The low country, from 400 ft . to the seaboard, is of course entirely tropical. The Northern, Eastern, North-Western and North-Central areas are either covered with dense forest or are open and park-like. They are in most places unhealthy from malaria, and are very hot and dry. The Hambantota district on the south coast is of a similar character. Large portions of this low jungle country is practically uninhabited, very difficult to get about in, and consequently its entomological peculiarities are not well known. There is such a sameness in the vegetation, rainfall, and characteristios of this part of the country generally, that we doubt there being many more species remaining to be discovered, and these are likely to be either South Indian species or local forms. Many and various attempts have been made by collectors to obtain specimens from these out-of-the-way places by employing natives; but experience has shewn that it is a pure waste of money, ending only in veration of spirit. A more idle, worthless lot than the
native butterfly-hanters of Ceylon does not exist; the reason being that living is so cheap, clothes almost annecessary, and laboar so dear, that there is little or no incentive to work. The best plan for those who have sufficient leisure is to adopt Messrs. Mackwood and Fairlie's method, and fit out one or two ballock carts and camp ont, travelling olowly from place to place. This can be made very enjoyable, more especially if the entomologist is a sportsman as well, as game, large amd small, abounds in many places, and he can combine the two very satisfactorily; bat on the other band July, one of the best months in the Northern Province, is the worst for shooting ; so that nuless more than batterflies are stadied, the entomologist will find time hang heavily on his hands, as the number of species is andoubtedly few, the whole number of Ceylon batterflies only amounting to some 228 species. The following extract from the Oeylon Independent will give a very good idea of the rainfall of the various districts in the Island :-
"The Surveyor-General has pablished with his Meteorological Report for last year a map of the Island, shewing the Average Annual Rainfall. We find from a comparison of this map with that supplied for the previous year that there is hardly any change in the amount of rainfall recorded in the different districts in 1896 and 1897. The district roughly included between Nawalapitiga and Watawala is the rainiest district of the Island, having the large annual rainfall of 200 inches and more. Taking this as the centre, the districts of the Island may be arranged round it roughly in concentric circles according to rainfall. The district next in point of rainfall to the NawalapitiyaWatawala district is that portion of the country in which are included Awissawella, Labugama and the Ratnapara districts with a rainfall of 150 inches and more. Next comes a large tract with a rainfall of 100 inches and more. In this tract are included the sea-board districts of the Western Province exolading Colombo, and of the Soathern from Galle to Ambalangoda. A large part of the Central Province except the Nawara Eliga district is also inoluded in this tract. Next in order comes an area with 75 inches and more of rainfall in which are included Colombo and Kandy, the ronte of the Railway between those two towns, the district of Galle, and the rest of the Central Province not incladed in the aree mentioned before. The driest parts of the Island come next. These dry districts can be divided into two areas, one with a rainfall of 50 inches and more, and the other with a rainfall of under 50 inches. In the former are included the N.-W.P. except the Pattalam district, the whole of the N.-C.P., half of the Jaffina Peninsula, Mullaittiva, Trincomali, Batticaloa, the Matara district, and strange to say Dumbara though suarounded by very rainy districts. The last place
J. I. 22

122

is occupied by Puttalam, Mannar, Jaffna, Tangalle and Hambantota We should like to make a remark with reference to the two dry zones of the Island mentioned above, which represent the largest portion of the Island. At one time they were the most popalous and prosperous, but now the most sparsely popalated and most anhealthy districts of the Island. The rain of these districts is due entirely to the fact that the rainfall is not now stored for the purposes of cultivation as was done in ancient time."

The seasons are very well marked, and consequently those genera such as Terias which are subject to seasonal variation show these modifications very distinctly. The dry-season begins about the end of Jannary, and lasts with an occasional shower until the burst of the South-West monsoon in the beginning of June. As soon as this is established butterfy life becomes abundant, but gradually diminishes as the monsoon dies away. In September there is usually a spasmodic revival just before the setting in of the North-East monsoon in the middle of October. After the initial heavy rains, batterflies start afresh in November, December and January, and it is in these months more especially, though to a slighter extent at the beginning of the SonthWest monsoon, that the extraordinary migratory flights of butterflies take place. These fights are perfectly amazing and scarcely credible. At Colombo, where Manders has more particularly noticed them, the direction of the flight is always northerly and principally along the seashore, possibly the more readily to avoid obstacles. The species which comprise these sensational flights are the following to the exclusion of almost any other:-Euplosa asela, Moore (and E. montana, Felder, at Nawara Eliya in May), Appias albina, Boisduval, and Appias paylina, Cramer, the two Oatopsilias, Papilio demoleus, Linnmus, and Belenois mesentina, Cramer, irregularly. He calculated the number passing two fixed points 20 yards apart close to the edge of the sea, and concluded that not less than 14,000 passed between these points during the hours the flight lasted from 10 A.m. to 2 or 3 p.м. There is no doubt that other species migrate also at uncertain intervals. Mr. Green informs us that Jamides bochus, Cramer, does, and so also does Polyommatus basticus, Linnæas. We are not prepared to put forth any hypothesis to account for this phenomenon, though it is a subject of great interest and well worth stady; but it requires a large number of skilled observers over a considerable area and for several years, and unfortunately it is difficult to secure these. The central mass of hills checks the spread of the sonth-west rain from reaching the northern and north-eastern parts of the island, and consequently this climate is very hot and dry. Except for an occasional heary downpour they are practically waterless, except
in the North-East monsoon when very heavy rain falls for a very limited period. Butterfly life in this region seems to be dependent very largely on the rainfall, a certain amount of moisture being required to bring the pupæ to emergence. On studying the list of butterflies it will be ob-served-which indeed would naturally be expected-that the very great majority of Ceylonese batterflies occur also in South India, or are very closely related forms, and no doubt the butterfly fanna of Ceylon has been almost entirely derived from Southern India. There is very little evidence of any connection, with the Malayan region; indeed, this evidence is confined, as far as we know, to three species only, viz., Danais exprompta, Butler, Euploea corus, Fabricins, and Elymnias singhala, Moore. D. exprompta is no doubt a local race of D : similis, Linnæus, a Chinese species, and \boldsymbol{E}. corus is related to \boldsymbol{E}. castlenaui, Felder, a Nicobarese and Malayan species. It is noteworthy that these two species belong to a highly protected group and are very tenacions of life. One might hazard the conjecture that the ancestors. of these species were carried hither by favourable winds from the Malayan coast, sacceeded in establishing themselves, and formed local races. D. singhala is very closely akin to E. panthera, Fabricius, ($=\boldsymbol{E}$. lutescens, Butler,) also a Malayan species, and it is remarkable that its one locality almost is the Peradeniya Botanical Gardens, which contains numerons Malayan Palmacess (on which the larva feeds) received from that part of the world. The butterflies found only in Ceylon otherwise than local forms are very few indeed. Danais taprobana, Felder, is undoubtedly the most striking as it is a common and handsome insect. The most interesting batterfly in Ceylon is, probably, Lethe dynsate, Hewitson, as it has no allies and has a distinct subgenus to itself. It is the link in the genus Lethe between those species having no sexual characters on either wiug and those having sexnal characters on both wings. In Ceylon it is a widely distributed but apparently local insect, and may yet be found in Southern India when that country has been more fully explored. Prioneris sita, Felder, is a wonderful mimic of Delias eucharis, Drury, though its manner of flight is quite different. The mimicry cannot be accepted on the usual grounds as it is a fast-flying insect and seemingly well able to take care of itself; though manifestly it must be an immense advantage to the insect to be mistaken when at rest (when butterflies are most liable to danger from their natural foes) for an inedible species, such as D. eucharis is, and the mimicry is shown by the coloration and markings of the underside only, which is the surface exposed, all Pierinæ resting with closed wings.

A perusal of this paper will show that we have endeavoured indirectly to bring to notice the very incomplete knowledge we yet
pocesess of this well-warked group. Among the mare intereeking questions to whioh local entomologiste might well direot attention is the stady of the varions local forms with the allied South Indian apocies. The genus Cirrhochroa, for instance, is in an unsatisfactory state. The limits of the genus Terias will remain undefined indefnitely unless some entomalogist will devote himself to a series of breeding experimentes which ahould not be diffioult as the species are ensily observed and reared. Onr canclusions regarding the few species found in Ceylon even with Mr. Grean's and Mr. Ormiston's help ane yet far from complete. The genus Aphneaus requires much close observation before it can be definitaly stated how many species occur in the Island. Mimiory does not oocur to any marked degree, to nothing like the same extent as it does far inatance in the Sikhim forests, where butterfly life is far mone abundant and the atruggle for exiatence all the more keen. The beet oxamples of one spocies mimioing another is the famale of Hypolimesas minippuo, Linnous, mimioing Danais chrysippus, Linnæus, and of the Prionerin mentiomed above ; and that of mimioing a natural object, Kallima philarchus, Westwood, a member of the well-keown "oakleaf" genus, reaembling an oak or perhapa better a chestnut leaf.

The list is largely founded on Moore's "Lepidopters of Ceylon," cols. I and III, which is likely to be the standard work on Ceylon batberfies for some years yet to come. We have therefore noticed where the nomenolature naw differs from the time, nearly twenty years ago, when Moore's work was pablished, and have also intimated where we have differed from Moore's determinations, so that local entomologista may hring their "Lepidoptera of Ceylon" up to date. That work enumerate 252 species; of these we have removed several as being synonyms of other species or from errors in record. We have, on the other hand, added 12, bxinging the total number up to 228, and we do not think this is likely to be greatly axceeded. We have to thank many local entomologists for help most readily accorded. To Mr. F. M. Maekwood, our Nestor in the science, we are greatly indebted, as he has ungradgingly given us the result of his many years' experience. Mr. Greon of Panduloga and Mr. Ormiaton of Haldummulle have given ua valuable notes and a large number of specimens, and Mr. Pole of Chilaw has been most obliging in sending us notes and presenting us with considerable numbers of apecimens from the more ineocessible and arid portion of the island.

Mr. de Nicérille would espeoially desire to bring prominently ta the notice of lepidoptarista in Coylon the importance of carrying ont a sapios of experiments in breeding butberflies of several generm occurring ing the island, notably Mycalesia, Oivrhockroa, Aphmsems, Teriaa and Apminh

The food-plants of the larven of all theas genera are well-known, withort this knowledge it would be impossible to do anything in this direction. Growing examples of these plants should be enclosed in a cage of garze or parforated sina, the leaves having first been carefully examined to ee if they bear any egga or larves; if they do, these should be removed. A female of the apecies to be experimented with should be let loose in the cage, and it is probable that she will lay eggs. No more than one female should be put into any one cage. On her death, she should be preserved for fatare reference, as it is important that her identification should be cartain, and also for comparison with her offspring. All the resaltant butterflies from the eggs laid by one mother should be set and compared with her. It will not improbably be found that these specimens will exhibit very great variation, the variations (espeoially if the experiments are carried out at the ohange of the seasons from wet to dry or from dry to wet) including distinot seasonal forms and probably intermediate forms between the wet and dry, and very possibly one or more forms which have bean considered distinct species. Cabinet naturalists from analogy may make possibly correot greases as to what are seasonal forms and what are distinct species, bat these guesses requira confirmation, and certainty can only be arrived at by careful breeding.

In this paper Major N. Manders is responsible for the notes on occurrence, etc., while Mr. L. de Nicéville hạs revised the nomenolatare, bringing it as far as possible up to date. He has followed Dr. F. Maore's "Lepidoptera Indica" as far as published (part xl), the Lycemnidso in vol. iii of de Nicéville's "Battertlies of India, Barmah and Ceylan," the Papilionines in the Hon. Walter Rothsohild's "Novitates Zoologiope," vol. ii, pp. 167-463 (1895), and the Hesperiidæ in Messrs. Elwes and Indward's paper in Trans. Zool. Soc. Lond., vol. xiv, pp. 101-324 (1897).

Family NYMPHALIDA.
 Subfamily Danaine.*

1. Hestia jásonia, Westwood.

Moore al Neotaria jasonia. Species of the genus have received many trivial names, such as the Sylph, the Widow, the Floater, the Spectre, and the Silver-paper-fly. It is peculiar to Ceylon, and is found in the low country, as at Labagama, 200 ft ., and ap to abont 5,000 ft ; always in foreats and in the naighbourhood of streams. It has a slow

[^9]sailing flight within a few feet only of the ground, and is consequently edsily captured, in this being unlike many of its allied species, which have a lofty flight over dense jungle or mangrove swamps, and are consequently rare in collections. The females are larger and usually paler than the males, but both sexes exhibit great variation in depth of colouring and exfent of markings, these characters having been taken by some anthors in allied species occurring elsewhere to constitate distinct species, very erroneously in our opinion. The larva still remains to be described. It will probably be found to feed on a creeper with a milky juice, the larva of the allied South Indian species, H. lynceus, Drury, feeding on Aganosma cymosa, Nat. Order Apocynaces. Mr. E. Ernest Green has sent de Nicéville a beautiful coloured drawing of the side view of a larva made by him from a specimen discovered by Mr. F. B. Armstrong, who found it in the district of Deltola feeding apon a climbing asolepidaceons plant allied to Hoya. It is deep velvety black, with four pairs of long filamentous tentacles from the third, fourth, sixth and twelfth segments, each pair springing from close to the dorsal line; each segment is marked with a rather broad pale yellow band, and the sixth to the twelfth segments bear laterally a large oval crimson spot; the head and legs are black. The larve is a very handsome one and is evidently warningly coloured. It probably feeds openly and must be very conspicuons.

2. Danais (Radena) exprompta, Butler.

Confined to Ceylon, and there found on the South-West littoral, no species of the sabgenus occarring in peninsular or continental India. It is abondant at Galle in June and July and again in November and December; also in the jungly country between Galle and Colombo, and sparingly in the botanical gardens at Heneratgoda, bat not further north than Negombo, where it is common. It used to occur in the immediate neighbourhood of Colombo, but of recent years appears to have disappeared. It is easily distinguished from the next species when on the wing by its much bluer coloration, which colour, however, rapidly fades after the death of the insect. The larva has still to be discovered.
3. Danais (Tirumala) limniace, Cramer.

Moore as limniace. Common and found almost everywhere in Ceylon; elsewhere it occurs nearly all over India, in Burma, IndoChina, and Soathern China and in the islands of Formosa and Hainan. The larva feeds on Asclepias, Calotropis and Hoya (Moore), and in the Western Himalayas on Marsdenia.

4. Daxais (Tirumala) septentrionis, Butler.

Occars commonly everywhere. The larva in Ceylon does not appear to have been discovered; in the Western Himalayas it feeds on Vallaris. It occurs in many parts of India, Barma, the Malay Peninsula, Indo-China, and many of the Malayan Islands. Mr. H. Fruhstorfer has recently named this species from South India and Ceylon Tirumala melissa dravidarum (Berl. Ent. Zeitsch., vol. xliv, pp. 113, 1191-899). We do not think that this soathern race of D. septentrionis can be separated from the northern one.

5. Danais (Limnas) chrysippts, Linnæus.

Moore as Salatura chrysippus. Very common all over the island. The larva feeds on Calotropis and Asclepias. Found also in S.-E. Europe, nearly all Africa and its satellite islands, all soathern continental Asia, the Loochoo Islands, and many of the western islands of the Malay Archipelago.
6. Danais (Salatura) plexippos, Linnæus.

Moore as Salatura genutia, Cramer. Very common indeed everywhere. In Calcatta, de Nicérille has seen the eggs of this species laid on Cynanchum corymbosum, Wight, in the Western Himalayas it feeds on an allied species of the same genus, and Dr. Moore gives Raphis, Ceropegea and Raphanus as its food-plants in Ceylon. It is found in most parts of India, Burma, the Malay Peninsula, Indo-China, Southern China, and Hainan and Formosa Isles.

7. Danais (Parantioa) aglea, Cramer.

Moore as Parantica ceylonica (recte ceylanica), Felder. A local race of this species is the North and Eastern Indian D. melanoides, Moore. In Ceylon it is an abundant and widely distribated batterfly flying nearly all the year round. The larva in South India and Ceylon feeds on Tylophora and Oalotropis. Dr. Moore says that D. grammica of Boisduval from Java is a synonym of D. aglea, and that he has a single female of it from Java. D. ceylanica, Felder, is another synonym.

8. Danais (Ohittira) taprobana, Felder.

Moore as Ohittira fumata, Butler. One of the most distinctive batterflies of Ceylon, and peculiar to the Island. It is abondant nearly all the year round in the hill country, but not below 5,000 feet, especially common in the neighbourhood of Nawara Eliya. It has been recorded from as low as 3,000 feet. Its transformations still await discovery.
9. Euplean (Orastia) asela, Moore.

This species is an insular form of the continental Indian \boldsymbol{E}. core, Oramer. It is one of the commonest of our batterflies at all elevations, especially so in November and Deoember when it joins in the annoal flights in thousands. Δ_{s} it is a fairly well-marked species, and has never been recorded from any looality outside Ceylon, it would seem that the annual migrations so-called of the Ceylonese butterflies are parely local, and that the flights do not even reach to the mainland of South India by Adam's Bridge acrose the nammo Palk Strait. The larva feeds on Nerium, and probably also on species of Ficus.

We have removed E. (Orastia) frauenfeldii, Felder, and E. (Orastia) scherveri, Felder, from the list of Ceylonese butterflies. Felder's original descriptions of these species are to be found in a list of the butterfies captured at the various ports at which the frigate "Novara" touched, written in 1862. W. frauenfeldii was said by Dr. Felder to have come from "Ceylon," and by Dr. Moore from "Trincomalee, on the N.-E. side of the island," there being a single male from thence in the British Museam. E. schertzeri is .also said by Felder to have come from "Ceylon," and is so recorded by Moore on Felder's authority. It is de Nioéville's opinion that Felder's type specimens of both these species were wrongly located, and that they both came from the Nicobar Isles, which the "Novara" visited. If this be so, E.camorta, Moore, is a synonym of E. scherzeri. He has examined the type specimens of both E. frauenfeldii and E. scherreri in the Nataral History Musenm of Vienna. As regards the specimen from Trincomalee mentioned above whioh has been described and figured by Dr. Moore as E. frauenfeldii, the identification is certainly incorrect, it being nothing less than E. lorquinii, Felder, originally described from South China, and very common at Hong-Kong and on the opposite mainland of Sonthern China. E. (Orastia) felderi, Butler, is a synonym of it as stated by Butler himself, though the type is said to have come from Sumatra, but it is recarded also by Butler from Hong.Kong. Felder himself in 1865 united E. frauenfeldii to E. esperi, Felder, originally described from "Kar Nicobar," saying that the type specimens are opposite sexes of one species, and the species will stand under the former name from the Nicobars, with E. (Tronga) biseriata, Moore, as a second synonym. As neither E. frauenfeldii nor E. scherseri have (with the exception of the British Museum specimen of the former mentioned above) for nearly forty years been found in Ceylon, and that Euploeas are large, conspicuous, and very easily caught batterflies which (where they occur) are nearly.
always common, it is hardly possible that they can have been overlooked during all these jears in a small island that has beeu thoroughly well worked for Lepidoptera. Neither is it probable that they have been exterminated, and still less probable that single immigrant specimens should have been captured on the occasion of the "Novara's" visit. The Trincomalee specimen is almost certainly wrongly ticketed.

10. Eoplea cords, Fabricins.

Moore as Macroplosa elisa, Butler. It is peculiar to Ceylon, on species of the subgenus being found in peninsular or continiental India, though an allied species, E. castehnaui, Felder, occurs in the Malay Peninsula, Sumatra and the Nicobars. The Burmese form of E. castelnaui has recently been named Macroplea corus vitrina by Fruhstorfer. In Ceylon E. corus is common at Galle, Labugama, and doubtless also in the intervening districts in June and July and again in November and December. Formerly it was found on Crow Island and other places in the immediate neighbourhood of Colombo. It is one of the largest butterflies of Ceylon, and from itg dall brown colour, its slow flapping flight, and its love of deep shady jungle, might easily when flying be mistaken for a bat. Dr. Moore has figured the larra and pupa, but the food-plant of the former appears to be unknown.

11. Euplas (Pademma) binhala, Moore.

Moore as Isamia sinhala. It is an insular race of the peninsular and continental E. kollari, Felder. Found in the low couutry aud up to aboat 3,000 feet bat not commonly. Manders took it once at Colombo on ground now bailt over. From its superficial resemblance to the common E. asela, Moore, it may very easily be overlooked. Its transformations are unknown.

12. Euplas (Narmiadu) montana, Felder.

Peculiar to Ceylon, but it has a near ally in the South Indian E. coreoides, Moore, which on the east coast occurs as far north as Orissa, and is a synonym of the much older \boldsymbol{E}. coreta of Godart. E. montana is not ancommon at certain seasons, and occasionally migrates in great numbers with E. asela, Moore, of which it is a mimic in the müllerian sense, but may be distinguished from E. asela even in flight by its more ronuded wings. It is found at all elevations, and has been taken rarely in the outskirts of Colombo, more commonly at Kandy, and abandantly at Nuwara Eliya in May. Its larva and pupa are still undiscovered.
J. I. 23

Subfamily Satyrine.

13. Mycalebis (Orsotrizena) mandata, Moore.

A very common species in the Western and Central Provinces of Ceglon up to about 3,000 feet, in open spaces in forests and jungle. It occurs also in Southern India. M. mandata is the wet-season and M. mandosa, Butler, is the dry-season form of this species. Its transformations have been recorded, and like all the Iudian Satyrine its larva feeds on rice and grasses.

14. Mrcalesis (Oalysisme) prrseus, Fabricias.

Like the last, this appears under two seasonal forms, a wet and a dry, M. perseus being the latter, and M. blasius, Fabricins, the former, Moore giving them as separate species in Lep. Cey., his pl. xi, figs. 2, 2a, male, representing the wet-season form. It is a very common species up to moderate elevations, and occurs almost throughout India, Burma, the Malay Peninsula, Southern China, Hainan and Formosa Isles, and many of the islands of the Malay Archipelago, extending to the Solomon group in the Pacific Ocean. Moore describes it as having in the male on the underside of the forewing a glandular patch of scales on the middle of the submedian nervare small and black, and the hindwing having on the upperside a tuft of radiating yellowish hairs arising within the discoidal cell from behind the base of the subcostal nervure and overlapping a glandular patch of black scales at the base of the first subcostal nervale. The larva feeds on grass as usual.

15. Mrcalesis (Calysisme) polydiota, Cramer.

This also has two distinct seasonal forms, M. polydecta being found in the dry-season, M. justina, Cramer, in the wet. It is omitted by Moore from his "Lepidoptera of Ceylon," but finds a place in his "Lepidoptera Indica." He describes the male as having, on the underside of the forewing a small glandular patch of blackish scales on the middle of the submedian nervare, and on the upperside of the hindwing having a subbasal tuft of yellow hairs overlapping a glandular patch of blackish scales. In so far there appears to be but little difference betwoen M. perseus, Fabricius, and M. polydecta, black and blackish, yellow and yellowish. But he goes on to say that "Individuals of the dry-season brood [it should be broods, as more than one brood of each seasonal form occurs in the year] of O. polydecta are distinguishable from those of the dry-season brood of C. perseus by the large pale-bordered ocellus on the upperside of the forewing, and in the hindwing of both sexes having a scalloped exterior margin, which latter is very prominent in most of the.
females." He notes that the wet-season brood of M. polydecta has "a moderately large distinctly-formed median ocellus with a yellowish outer ring (much larger than in the males of the wet and dry-season brood of M. perseus), the surrounding area being slightly tinged with ochreons" on the apperside of the forewing. His figures of both sexes of both species bear out this distinction between them. But we have grave doubts that this solitary and unimportant character really denotes two distinct species. Breeding alone can solve the question, though a critical examination of the prehensores of the male might go to prove the matter one way or the other. M. polydecta appears to occur almost everywhere in India with M. perseus, which is another disquieting feature. It is quite common in Ceglon. The wet-season form is figured in Lep. Cey., pl. xi, figs. 3, 3a, male, as Calysisme drusia, and again the same form on the same plate, figs. $4,4 b$, male; $4 a$, fomale, as 0 . mineus: the dry-season form is given on pl. xii, figs. 1, Ia, male, as O. perseus. The trae M. mineus, Linnæus, given originally by Moore from Ceylon, is now restricted by him to Northern and Eastern India, Barma, Siam and S.-E. China. Dr. Moore confines the occurrence of M. polydecta to India. It has not been bred.

16. Mycalests (Oalysigme) sobdita, Moore.

This species has recently been described by Dr. Moore from South India and Ceylon. The male has on the underside of the forewing a [large] elongated glandular patch of ochreous-yellow scales apon the submedian nervare extending from its middle to the discal pale band; and on the apperside of the hindwing a subbasal tuft of pale bairs exserted or overlapping a glandular patch of ochreous-yellow scales. In the dryseason form Moore describes the scales as yellow instead of ochreousyellow. The large size as well as the colour of the patch of scales described above on the forewing will readily distinguish the males of this species from the two. which have preceded it. Dr. Moore records it from Trincomali in August, October and November, but it is doubtless quite common throughont Ceglon all the year round and ouly awaits recognition. Its transformations have not been recorded.
17. Mycalesis (Calysisme) rama, Moore.

Calysisme rama, Moore, Lep. Ind., vol. i, p. 196, pl. Ivii, figg. 3, 3a, male, wetseason form (1892).
"Male. UpPRRside, both wings olivescent ochreous-brown, marginal lines indistinct. Forewing with a distinct transverse medial discal line, and a large prominent median black ocellus with a white pupil and narrow ochreous-yellow outer ring, above which is a very minute
sabapical ocellus between the discoidal nervales. Hindwing with a less distinct small ocellus between the second and first median nervales, a subbasal tuft of yellow hairs overlapping a small glandular patch of dark brown scales extending below the first subcostal nervale and surrounded by the ordinary nacreous costal area. Underside, both wings pale ochreous-brown, palest externally; marginal lines distinct; with a moderately broad pale ochreous-yellow transverse discal fascia, the inner border of which is sbarply defined by a dark brown line, the outer border being diffused. Foreving with a small prominent subapical and a large median ocellus; and with a small glandular patch of dull brown scales on the middle of the submedian nacreons area. Hindwing with seven ocelli, the upper second and third, and the seventh minate and almost obsolete, the other four prominent. Body beneath, legs, and sides of palpi pale ochreons; clab of antennse blackish and tipt with ochreous. Expanse: 1.87 inches."
"A single specimen of the male of this species (presumahly of the wet-season brood) taken at Udagama, in the West Central District of Ceylon by Mr. Reginald Poole, and now in the collection of Mr. E. E. Green, is all that is yet known to the author." (Moore, l.c.).

Mr. John Poole has sent a single male of this species to de Nicéville to see, taken at Udngama. Before anything definite can be said about this supposed new species, much more must be known aboat it than can be ascertained from a couple of specimens.

With regard to the Oalysisme group of the genus Mycalesis, Manders writes:-"I have throngh the kindness of Mr. Ormiston and others been able to examine a large series of specimens from Ceylon, and I find as a result that though it is easy to separate typical examples of each it is impossible to draw any hard and fast line between the seasonal forms; and further I am in some instances naable satisfactorily to discriminate the species; there are certain specimens which are intermediate between M. perseus and M. polydecta." Further, Manders has compiled the following note on the appendages of the males of the subgenus:-"The yellow hair-like processes on the apperside of the hindwing of M. perseus and M. polydecta are situated immediately behind the subcostal nervare at its origin. They arise almost in a bunch between the scales of the wing, and pass forwards and outwards in a fan-shaped manner to the oval depressions aboat to be described. They are stractareless and solid throughont (as examined ander $\frac{1}{12}$ oil imersion lens magnifying 950 diameters), they gradually taper to a point, and are probably chitinous in composition. The oval depressions alluded to above are two in number, one situated on the submedian
nervure of the forewing on its anderside, the other partly below bat more largely above the subcostal nervare of the hindwing on its apperside. In M. perseus and M. polydecta these depressions are black, and are due to very closely imbricated scales with evenly rounded ends. That these spoon-shaped structares are depressions of the wing-surface is evident from the fact that all the scales are not in focus at the same time. In some specimens of M. perseus and M. polydecta these depressions are darkly iridescent, and ander the microscope are seen to be composed not only of black scales, but also many of a deep steel, and others again of a lighter blue colour, changing their depth of colouring according to the direction of the light thrown on them. The scales under 950 diameters shew very minute striation, but in all cases the ends are evenly rounded. These rounded scales resist the action of solvents such as eau de juvalle much more strenuonsly than the scales on other parts of the wing. There is no true glandular structure whatever; but it is noteworthy that only the ends of the yellow "hairs " rest in the oval depressions. There is nothing in the structure of these appendages to indicate their function, nor do I think that they are used for stridulating purposes, as in that case I should have expected to find that the scales and hair-like processes would be toothed in some way 80 as to produce sounds, but this is not the case."
18. Mycalesis (Nissanga) patnia, Moore.

Peculiar to Ceylon ; but a closely-allied speciex, M. junonia, Butler, occurs in South India. It is in Ceylon a widely distributed and common insect, ascending to considerable elevations, being particularly common about Kandy. It is strongly seasonally dimorphic ; the rains form being very dark, especially on the ander sarface. It has never been bred.

19. Letee (Hunipha) dynsate, Hewitson.

Moore as H. sihala, Moore, and H. dynsate, of the former he described both sexes in the Lep. Cey., of the latter the female only, bat united them ander one species in Lep. Ind. It is not ouly rare but is one of the most interesting of Ceylonese batterflies, and is confined to the island. The sexual patch of hairs on the forewing of the male on the upperside is unique, the subgenus Hanipha being confined to a single species. The white subapical band on the forewing of the female is variable in width, specimens from the hills having it narrower than specimens from the low country. It is found in the Soath-West portion of Ceylon at Awisawella and Udagama in the low conntry in July, and at Hapatale, 5,000 feet, and Ohiya, 6,000 feet, in the hill country. It has also been taken in the Maskeliya district by

Mr. E. E. Green. Dr. Moore records it from near Nawara Eliya in March and April, and at Punduloya in July. Its transformations are unknown. Like all Lethes, the larva probably feeds on bamboo or grasses.
20. Lethe drypetis, Hewitson.

Moore as L. drypetes [sic] in Lep. Cey. and Lep. Ind. Occurs also in South India (as L. todara, Moore). In Ceylon it is not uncommon amongst bamboos, on which the larva feeds, at 3,000 feet and upwards. It is common in Punduloya in suitable localities, and Manders has taken it in May in the Hakgala Gardens below Nuwara Eliya.

21. Leter neelgherriensis, Guérin.

Moore as neelgheriensis in Lep. Ind. Common in the middle hill districts of Ceylon, more particularly perhaps along roads leading through tea estates. It is found also in Southern and Central India, and is closely allied to the North Indian L. rohria, Fabricius = L. dyrta, Felder. Dr. Aurivillins has named the L. dyrta of anthors L. confusa (Ent. Tids., vol. xviii, p. 142, n. 15-1897). Mr. E. E. Green says that the larva feeds on grasses.

22. Leter daretis, Hewitson.

Peculiar to Ceylon, and very common at high elevations. It is one of the few butterflies found on the Horton Plains, 7,000 feet. It is abundant nearly all the year round at Nuwara Eliya, the females being more frequently noticed than the males from their habit of flying closer to the ground. The males, unlike the majority of the genns, are fond of settling on the upper branches of low jungle trees, and flying rapidly in the sun round the topmost branches. Its transformations are uuknown.

23. Ypthima singala, Felder.

Moore as Y. singala and Y. thora, Moore. Through the kindness of Mr. Ormiston, Manders has examined thirty specimens of this insect from the Haldummulle district, $1,500-3,500$ feet, and from the Bandarawella district, 5,000 feet, and finds very great variety amongst them. The males are more frequently spotless on both wings on the upperside; but sometimes have a more or less conspicuous ocellus at the anal angle of the hindwing, and a more conspicuons, larger external ocellus is not infrequent; very rarely there is a third small ocellus external to this. In two specimens the forewing has a small subapical bipupilled ocellus, this being the \mathbf{Y}. thora of Moore. The females are more constant on the
apperside. The underside of both sexes is very variable, the upper ocellus of the hindwing is the one usually wanting. In one specimen there are four ocelli on one wing and five on the other. The species is widely distributed, and is not uncommon on grassy slopes in the middle hill districts. Dr. Moore restricts it to Ceylon, bat it certainly occurs in many parts of India also. It is strongly seasonally dimorphic. Its transformatious are uukuown.

24. Ypthima ceylonica, Hewitson.

The pure white patch on the upperside of the hindwing of this insect renders it one of the most conspicuous and easily distinguishable species in the genus. It is very common in the low country, particularly so in the Cinnamon Gardens at Colombo, flattering about amongst the grass on the roadsides nearly all the year round. It is. found in South India, and on the east coast as far north as Orissa. It has never been bred.

25. Melanitis ismene, Cramer.

Moore as M. ismene, and M. leda, Linnæus. The wet-season form of this species is M. determinata, Butler; the dry.season form is true M. ismene. The true M. leda, Linnæus, usually understood to be the wet-season form of M. ismene, is now said by Drs. Butler and Moore to be a distinct species from Amboina. M. ismene is very common in Ceylon and is widely distribated. Its range in Africa, Asia, Malaya, Anstralasia and the South Seas is very great. It has been frequently bred on rice and grasses.
26. Melanitis tambra, Moore.

Dr. Moore in Lep. Indica describes and figures dry and wet-season forms of this species, and restricts it to Ceylon. He also describes the larva and papa but does not give its food-plant, though that is almost certain to be the same as for M. ismene, Cramer. It is very close indeed to M. bela, Moore, restricted by the describer to the Himalayas, Assam, the Naga, and Khasi Hills and Burma. If really distinct, which we doubt, size alone would appear to distinguish between them, M. tambra being the smaller. M. tambra probably occurs all the year round, and has been recorded from the Western and Central Provinces, in the plains and up to 3,000 feet elevation; from Punduloya, Ramboda and Kandy (Moore), Manders records it from the Hambantota district. Dr. Moore gives M. varaha, Moore, from Sonth India, which is also doubtfully distinct from M. bela. M. suyudana, Moore, the describer restricts to the Malay Peninsula, Sumatra, Nias and Java; M. abdullæ,

Distant, Dr. Moore gives from the Malay Peninsula; and there are doubtless other named forms of M. bela which have been described from more distant localities. As M. ismene, Cramer, is admitted to have a wide range, it is more than probable, we think, that M. bela is also widely spread.

Subfamily Elymninas.

27. Elymias fratrrna, Butler.

This is the Ceylonese form of the continental Indian E. undularis, Drary, the females of the two species being indistingaishable. It is common in Ceylon in the low country, and is found usasally in jungle in the neighbourhood of water. The males are fond of settling on the .stems of Caladium, which make them somewhat conspicuous in spite of their dull-coloured under-surface. The female is totally unlike the male, and bears a strong superficial resemblance to Danais plexippas, Linnæus, which it doubtless mimics. The larva is well known and feeds on Palmacers.

28. Elymnias (Melynias) singhala, Moore.

Moore as Melynias singala in Lep. Ind. It is somewhat close to, though quite distinct from, \boldsymbol{E}. lutescens, Butler, from the Malay Peninsula, Sumatra and Borneo, which is probably a synonym of E.panthera, Fabricius, though the latter is kept by Moore as a distinct species from Java. Moore places panthera in the genus Elymnias and singhala in the genus Melynias. Mr. F. M. Mackwood informs us that up to quite recently the Peradeniya Botanical Gardens near Kandy was the only locality for E. singhala, and it is abundant there, bat it is apparently gradually extending its range. It appears to be quite constant, and is confined to Ceylon. Moore suggests that it mimics Eruplosa simbala, Moore. The transformations are nuknown, bat Mackwood says that the larva feeds on the leaves of a species of palm tree.

Subfamily Amathosinns.

29. Discophora lepida, Moore.

Restricted to South India and Ceylon, and apparently always rare. In South India it is strongly seasonally dimorphic. In Ceylon it is found in the low country jungles on the east and west of the island; we have specimens from Awissawella and the forests near Galle; Mackwood obtained a single specimen in Ambegamoa. The transformations have been deacribed, and, as usual in the genus, the larva feeds on bamboo.

Subfamily Nymphaline.

Dr. Moore divides the subfamily into eight groups, Charaxina, Potamina (Apaturids, anctoram), Euthaliina, Limenitina, Nymphalina, Argynnina, Melitesina, and Eurytelina. As far as we can we have followed him, but up to date several of his groups have not been reached in Lep. Iud.

Group Oharaxina.

30. Charaxrs pgaphon, Westwood.

The Hon. Walter Rothechild in Novitates Zoologicæ, vol. v, p. 545 (1898) has commenced a paper entitled "A Monograph of Charuxes and the allied prionopterons genera," but as two parts, which have alone been published up to the present date, only include one species from Ceylon, we are only able to follow him so far. He says the type of Charaxes is jason, Linnæns, and of Eulepis is samatha, Moore. He admits tbree other genera, Euxanthe, Palla, and a new geuns, the types of these being eurinome, Cramer, decius, Cramer, and trojanus, ? anthor. The two first would appear to contain our Ceylonese species.

In Lep. Cey. Moore gives Haridra psaphon, Westwood, male only, and Haridra serendiba, Moore, female only, these two names representing opposite sexes of one and the same species. It is confined to Ceylon, but has a close ally in the South Indian C. imna, Butler. It is not very rare near Kandy, and Moore records it from Trincomali, Kottawa, A wissawella and Kanthalla. It may be useful to collectors to note that toddy or rum and sugar spread apon tree trauks in the hannt of Churaxes and Euthalias often proves a very successful bait. The female is very rarely met with. The transformations of O. psaphon are anknown.

31. Charaxes fabius, Fabricias.

Abundant on the North Central Road and low forest land generally in that Province, but not reaching the middle hill district. It is found in many parts of India and in Barma. Its transformations are well known, and the larva feeds on the tamariud tree, Tamarindus indica.

32. Eulipis athamas, Drury.

Moore as Eulepis samatha, Moore, and sunk by him in Lep. Ind. as a synonym of E. athamas. Rothschild in Nov. Zool., vol. vi, p. 249 (1899) records it from Ceglon as "Eulepis athamas agravius f. (temp. P) madeus, Rothschild." Not at all rare in jangle in the lower hill district. It is very common in the neighbourhood of Kandy at the beginning of J. 11. 24
the South-West Monsoon and at the end of the year. Rothschild restricts this particular form of E. athamas to the Central Provinces of India, South India and Ceylon. The parent form, true E. athamas, he gives from N.W. India to Southern China, Burma, the Malay Peninsula, and Indo-China. Its transformations bave been frequently recorded.

Group Potamina.

33. Potamis (Rohana) camiba, Moore.

This species is confined to Ceylon and Sonthern India, to the northwards being replaced by P. parysatis, Westiwood, that species being found in the Himalayas, Assam, Burma, Indo-China and Southern China. It is widely distributed in Ceylon from the low hill country upwards, and the males are not ancommon; the female, as in the genus generally, is much less commonly seen, and is a good mimic of species of Ergolis. The larva and pupa have been described and figured.

Group Euthaliina.

34. Parteinos cyanrus, Moore.

Confined to Ceylon, replaced in South India by P. virens, Moore. P. cyaneus is found at all elevations, is not rare, but is difficult to catch. It has a remarkably distinctive mode of flight, which makes it recognizable at once on the wing. It flies in May, June and July, and again in November and December. Moore describes and figares its early stages.
35. Stmperdira nais, Forster.

Found on the eastern side of the island near Trincomali, and in the grassy country near Haldummule from 500 to 2,000 feet elevation, commonly in November and December. In India it is widely distributed. Its larva feeds on Diospyros, Nat. Order Ebenacess, and on Sāl (Shorea robusta).
36. Euthalia (Dophla) efecina, Stoll.

Restricted to Ceglon, replaced in South India by the closely-allied E. laudabilis, Swinhoe. Common in the jangles in the low country in the North Central Province, probably throughout the year in greater or less abundance. On one occasion Manders counted thirty of these batterflies sucking ap the sap flowing from a tree in the jungle near Mahintale in August. It occurs also in the forests near Galle and Labugama. Its transformations are unknown. The larva will probably be found on Diospyros.
37. Edthalia lubentina, Cramer.

Found in Ceylon not commonly in the thick forests between Dambool and Anaradhapura, and Dambool and Trincomali. It occurs in many parts of India, in Burma, the Malay Peninsula, Indo-China and Sumatra. The females are more frequently met with than the males. Its transformations are known, the larva feeding on Loranthus.
38. Eothalia gardda, Moore.

Not so common as the next, but found in the same localities. Mackwood got it at 3,000 feet elevation, and Yerbary at Peripancherakullam on the Kandy Road; Manders at Heneratgoda. It occurs nearly all over India, in Barma, the Malay Peninsula, Indo-China, Sumatra, Java, and Borneo, the form from the three last-named islands being probably the E. sandakana of Moore. The larva and pupa are well known, the former feeding on plants of mauy orders, but more especially on the mangoe.

39. Euthalia vasanta, Moore.

Found only in Ceylon, and very common in the low country, especially so about gardens in Colombo in June and July, and again from October to December. The transformations are known, the larva, like that of E. garuda, Moore, feeding on mangoe leaves.

Dr. Moore in Lep. Cey., vol. iii, p. 529 (1887) records E. puseda, Moore, from Ceylon from specimens in the British Museam. In Lep. Ind., vol. iii, p. 99 (1897) he records Cynitia puseda from the Malay Peninsula only. It can hardly occar in Ceylon.

Group Limenitina.

40. Limenitis (Moduza) calidosa, Moore.

Moore as M. calidasa. Confined to the Inland, and a local race of L. procris, Cramer, from India and Burma. In Ceylon it is not rare in the jungles of the lower hills. The transformations have been described and figured.
41. Neptis jumbae, Moore.

Moore or N. jumba in Lep. Cey., and Andrapana jumbah in Lep. Ind. Common in the jangles in the North Central Province, bat not extending into the lower hill district. Manders has taken it at Anaradhapara, Mahintale and Dambool in Aagust; it also occurs in many parts of India, Burma, in the South Andaman and Maldive Isles. It is a well-marked and easily-recognized seasonally dimorphic species; and its transformations have been recorded.
42. Neptis tarmona, Moore.

Moore as N. varmona and N. disrupta, Moore. A common low country insect which is seasonally dimorphic; occasionally the melania aberration N. disrupta is met with. Dr. Moore says that the dry-season forms have been named N. kamarupa, Moore, and N. eurymene, Batler, and the wet-season forms are typical N. varmona, and N. swinhooi, Butler. It is widely spread in India, and its transformations are well known.
43. Neptis (Rahinda) sinoita, Moore.

A common species at low elevations, but found in the hills ap to an elevation of 300 feet. It has a near ally in N. hordonia, Stoll, from India, Burma, the Malay Peninsula, Indo-China, Sumatra, Java, Borneo, Banka, Bali, Lombok, Sumba and Sambawa. Its larva and pupa are unknown.

Groap Nymphalina.

44. Junonia iphita, Cramer.

Moore as Precis iphita. Abandant everywhere in Ceylon, and occurring nearly all over India, and in Burma, the Maldive Isles, the Malay Peninsula, and many of the islands in the Malay Archipelago as far as New Guinea and in New Ireland in the Pacific, also in China and Hainan Island, and wherever found varies considerably in the depth of its colouring owing to seasonal causes. Its larva and papa have been described.

45. Jumonia atlites, Linnmas.

Moore as Precis laomedia, Linnæus. A common low country insect in Ceylon, found also in India, Burma, the Malay Peninsala, the Nicobar Isles, Indo-China, probably Southern China, Hainan Isle, and nearly throughout the Malay Archipelago. It has often been bred.
46. Junonia orithyia, Linnæus.

Moore as J. orithya. This name was first spelt oritya by Linnæus, but orithyia is classically correct. Abandant, more especially in the low country, bat not uncommon at Nuwara Eliya. Occurs almost all over India, Burma, Southern China, Formosa, and probably in Indo-China. Its larva and pupa have long been known.
47. ЈЈмомй" ниётt, Fabricius.

Moore as J. cenone, Linnæus. Scarce in Ceylon, and only found in the hottest and driest parts of the igland, It occurs all over, India, in

Burma, in the Andamans and Nicobars, Southern China and Hainan Island. In India it has often been bred.
48. Jenonia lemonias, Linnæus.

Not so abundant in Ceylon as J. atlites, Linnmas, and found in the same regions. Occurs also throughout India, Burma, the Malay Peninsala, Indo-China, Southern China, Formosa, Hainan, the Philippines, and has been recorded from Japan. Transformations known.

49. Junonia almana, Linnmes.

Moore as J. asterie, Linnæns, which is the wet-season form, while trae J. almana occurs in the dry-season. It is abundant in the low country. Found all over India, Burma, the Malay Peninsula, in the Andamans and Nicobars, China, Formosa, Hainan, Japan, Sumatra, Java, Borneo, Bali, and the Philippines. Its transformations are well known.

50. Copea placida, Moore.

The Ceylon insect is a good local race of the Indian 0 . erymanthis, Drary, in Soath India the two species gradually merge into one 2nother. Mr. Fruhstorfer in Berl. Ent. Zeitsch., vol. xliii, p. 198 (1898) has described the form from South India intermediate between true O. erymanthis and O placida as O. erymanthis maja. This form cannot in our opinion rank even as a sabspecies, as it is not constant to locality. In Ceylon O. placida is widely distribated bat not abandant, more common in the low conntry, found rarely at Nuwara Eliya, in jungle near water, and is not easy to capture in good condition. Its transformations have been described, the larva feeds on Flacourtica.

51. Cethosia nietneri, Felder.

Peculiar to Ceylon, replaced in Soathern India by the allied C. mahratta, Moore. Very common in the low hill country round Kandy, rarely met with at Colombo in June and July. Its handsome larva and papa are well known.

52. Crnitia asila, Moore.

Pecaliar to Ceylon, replaced in Soath India by the closely-allied C. saloma, de Nicérille. In Ceylon it is locally common in the low conntry and the middle hill districts. As usual in the genus, the female is much less commonly seen than the male, and on the wing may be mistaken for O. nietneri, Felder. It is generally found in thick jungle near water. Its transformations have been recorded.
53. Cirrhochroa thais, Fabricias.
54. Cirrhochroa lanka, Moore.
55. Cirrhochroa cognata, Moore.
56. Cirrhochroa swinhori, Butler.

It is impossible in the present state of our knowledge to be at all certain, much less dogmatic, as to how many species of Cirrhochroa exist in Soath India and Ceylon. From the other species of Oirrhochroa found in North-East India all of them can be at once distingaished by their smaller size and deep ferruginous colour, except O. swinhoei, Butler, which is more ochreons. According to Moore, C. thais occurs in Ceylon, bat de Nioérille states in Butt. Ind. that the description given by Fabricins applies best to O. thais from Southern India, and that the Ceylonese C. cognata is a local race of it. In a similar way C. lanka is a local race of the Sonth Indian O. relata, de Nicéville. C. swinhoei is not given by Moore as occurring in Ceylon, but de Nicéville states that he has specimens from thence. This is a problem to which local entomologists should turn their attention and endeavour to solve by breeding the various species, and by examining a large number of specimens from as many localities in Ceylon and Soathern India as possible. They occar all over Ceylon, from sea-level to 6,000 feet elevation. The imagines are probably seasonally dimorphic, which will account for their vagariss in coloration and markings. The transformations of C. cognata hare been described, but no food-plant is recorded. In Sonth Iudia C. thais has been bred on Hydrocarpus wightiana.

57. Htpolimnas bolina, Linnæus.

We omit Apatura jacintha, Drury, recorded as a distinct species by Moore from Ceylon, as it is in our opinion not distinct from the parent form. H. bolina is common everywhere in Ceylon and almost throughout Southern Asia, Malayana, Australia to the Pacific. Its transformations are well known.

58. Hypolimnas misippes, Linnæas.

The female of this species is totally unlike the male and exists in two forms, the first being the Papilio diocippus of Cramer, a perfect mimic of Danais chrysippus, Linnæus, and is by far the more common of the two; the second is the Papilio inaria of Cramer, a mimic of Danais dorippus, Klug, and is distinctly rare. It is carious that it should occar in Ceglon at all, as D. dorippus is not fond in the Island, being coufined in India to the western littoral (Bombay, Kutch and Sind).
H. misippus is foand in Ceylon in the low conntry in September, but is not abundant. It is very widely spread, occurring even in North America, nearly all over Africa, in Southern Asia, Malayana, and Anstralia, also in many oceanic islands. Its transformations are well known.

59. Piramisis cardit, Linnæob.

This cosmopolitan butterfly is found everywhere in Ceylon commonly. Its earlier stages have been recorded for centuries.

60. Pyrambis indica, Herbst.

The Ceylon form of this species, which also is found in Southern India, has, quite unnecessarily we think, been named by Mr. Fruhstorfer in Ent. Nach., vol. xxiv, p. 61 (1898), P. indica nubicola. In Ceylon it is found only at high elevations such as Nuwara Eliga and the Horton Plains, where it is not ancommon. It is more plentiful in some seasons than in others, and flies throughont the year. It occurs in Madeira, the Canary Isles, Southern Europe, the Himalayas, Assam, Northern Burma, China, Corea, Japan, Formosa, the Philippines, and M. Oberthür has recorded it from Australia. Its transformations have been recorded.

61. Vanessa haronica, Moore.

A local race of the Indian ∇. canace, Linnæns; fonnd also in Burma, the Malay Peninsula, China, Corea, Japan and Hainan Island. Not uncommon in the upper and middle hill districts of Ceylon, occasionally found at much lower elevations, and nearly all the year round. Its larva and pupa are known.
62. Kallima philarchos, Westwood.

Found only in Ceylon. It ocours locally common at Kandy, Kurunegalla, Haldummulle, and Ratigalla amongat other places in July and again in November and December. It is strongly attracted by old beer caske, toddy, decaying fruit, and " sagaring" the tree tranks with sugar and rum or with toddy, all of these are a sure bait if used where the butterfly is found. K. mackwoodi, Moore, from Ceylon, is not distinct from K. philarchus, that species varying much in the depth of colouring and the number and position of the hyaline spots on the forewing. On the underside it is extremely variable, some specimens having a pale grey ground-colour, others a deep red, and so on. It is almost a perfect mimic of a dead leaf when at rest with its wings folded. It has not been bred in Ceylon, bat the larva of the allied K. wardi, Moore, in South India feeds on Strobilanthes.
63. Dolrscballia polibete, Cramer.

Moore as D. bisaltide, Cramer. Not uncommon in the jangles at the foot of the hills, occurring also in Sonth India; found again in the Eastern Himalayas, Assam, Burma, the Andaman and Nicobar Isles, and in several of the islands of the Mnlay Archipelago. It varies greatly on the under surface. Two or three specimens have been taken at Nuwara Eliya, they were probably non-resident. It transformations are well known.

Group Argynnina.

64. Araynnis hyperbios, Linnæas.

Moore as Acidalia niphe, Linnøos. Very common in the upper and middle hill districts wherever the genns Viola is found, on which plants the larva feeds; particularly numerons about Nuwara Eliya and on the Horton Plains, stragglers being occasionally found in the low conntry. It flies nearly all the year round. In India it is very widely spread, occurring also in Abyssinia, the Maldive Isles, Northern Burma, China, Formosa, Japan, Sumatra, and the Philippine Isles. Dr. C. Aurivillins bas recently pointed out that Papilio hyperbius, Linnæus (1763) is an older name than P. niphe, Linnæas (1767).

65. Atella phalantha, Drury.

Moore as A. phalanta. Common everywhere in Ceylon but not abandant. It occurs also commonly nearly throaghout India, where its early stages have frequently been studied. Found also throughout Africa and its satellite islands, in Burma, the Malay Peninsula, IndoChina, China, Hainan, Sumatra, Nias, Java, Bali, Lombok, Celebes, Sumba, Sambawa, Flores, Letti and Kisser.

Group Eurytelina.

66. Ergolis taprobana, Westwood.

Confined to South India and Ceylon. Common all the year round in the low country and up to 6,000 feet. Its transformations have been recorded from Sonthern India. The larva feeds on the leaves of Tragia involucrata, and the castor-oil plant.
67. Ergolis $a r i a d n e$, Linnæeas.

Moore as E. minorata, Moore. Common in the low country and ap to 2,000 feet; above this elevation it is rare. It occars all over Indis and has been often bred, the larva feeding on Tragia. E. ariadne occurs also in Burma, the Malay Peninsula, Indo-China, Formosa, Heinan,

Sumatra, Java, Borneo, Bali, Bankn, Lombok, Billiton, Celebes, Sambawa, Sumba, Flores, Alor, and Kalao.
68. Byblia ilithyia, Drary.

Common in the low jangles in the north of the island in July and December. It is found also in South and Western India as well as in Africa and Arabia, and is everywhere strongly seasonally dimorphic. The larva feeds on the leaves of Tragia.

Subfamily Acraines.

69. Telchinia viole, Fabricins.

An abundant species in the low country all the year round. Common also in India. Its transformations are well known, the larva feeding on Modecca.

Family LEMONIIDAF.

Subfamily Libytereine.

70. Libythen myrria, Godart.

Not hitherto recognized from Ceylon, but there are one or two specimens from thence in Mr. Mackwood's collection, and one in that of Manders. These came probably from the neighbourhood of Kandy, where doubtless it is not rare though generally overlooked. It occurs almost throughout India, the larva feeding on Oeltis. Mr. Fruhstorfer in Berl. Ent. Zeitsch., vol. xliii, p. 169 (1898) records true L. myrrha from Sumatra, Java, Bali, Lombok, Borneo, and Sambawa, and L. myrrha sanguinalis, Fruhstorfer, from the Himalayas and Malay Peninsula. Besides the localities for L. myrrha given above, it is found in Indo-China, Western China, and Sumba.

71. Libythea rama, Moore.

Very common at the higher elevations. Manders notes that he is inclined to think from the small material at his disposal that typical L. rama is found from about 5,000 feet upwards and gradually merges into L. myrrha, Godart, in the lower country; in this de Nicéville concurs. It is found also in South Indin, and Watson has recorded it from the Chin Hills of Upper Burma, 5,000 feet. It has never been bred.
72. Libytiea lepita, Moore.

Not before recorded from Ceylon and apparently hitherto overlooked by collectors, though it is a well-marked and easily-recognised J. 11. 25
species owing to the ferruginons tentpeg-shaped marking in the discoidal cell of the forewing. Mr. Mackwood has three or four specimens in his collection, and Manders several, all taken in the low country. It is fonnd in India, very rarely in the south, more commonly in the north. It occurs also in Upper Burma, China and Japan. Its transformations are unknown.

Subfamily Nemeobine.

73. Abisara prunosa, Moore.

A local race of A. echerius, Stoll, from South China, differing only therefrom in its deeper coloration. Individuals vary greatly in size. In Ceylon it is common in the low country in June and July and again in November and December. It occurs also in South India, and has been bred there on Embellia; in Ceylon the larva feeds on Ardisia.

Family LYC 屛NID屈.

74. Neopithecops zalmora, Butler.

Moore as Pithecops dharma, Moore. There is a grent difference between the rains and dry-season forms of this species, the former is almost white on the underside, the latter numerously speckled with fuscous spots. It is a common low country insect in Ceylon, and is very widely spread in Southern Asia. In South India the larsa feeds on the leaves of Glycosmis.
75. Spalais epius, Westwood.

Not ancommon in Ceylon but local, and foand in the low conntry. Manders has taken it once at Colombo, but it is common a few miles out at Rambukhan. The difference in the outline of the apices of the forewing of the two sexes is noteworthy, that of the male being very acute, that of the female rounded. The transformations of this species as given by Moore in Lep. Cey. are incorrect, the larvæ and pupm figured being that of some other lycænid, probably that of Rathinda umor, Fabricius (No. 132). The larva is carnivorous; the papa is very remarkable, as it presents the appearance of a minute monkey's head. It is found in many parts of India, in Burma, Java, Bali, Borneo, Sumba, Sambawa, and Damma Islands.

76. Megisba malaya, Horsfield.

Moore as M. thwaitesi, Moore. This is an interesting species as it occurs in a tailed and a tailless form, the former not being found in Ceylon, though the commoner of the two forms elsewhere in Asia. Like

Neopithecops zalmora, Butler, it is variable as regards the extent of the white central area of the forewing. In Ceylon it is a common low country insect, and is often found in company with the two preceding species. Its has a wide range in Sonthern Asia, occurring in Malaya as far east as New Guinea, and in the islands of the Pacific. It has been bred in Ceylon, the larva feeding on Sapindacea.

77. Chilades laius, Cramer.

Moore as C. varunana, Moore. Seasonally dimorphic, Moore's name applies to the wet-season form. It is a widely distributed insect in Ceylon, India, China, and in Hainan and Formosa Islands, in the former island being found at all elevations, and is usually abundant at Nuwara Elifa in November, the specimens then being of the rains' form. Manders notes that he has not yet met with the dry-season form in Ceylon, though no doubt it occurs there. The larva feeds on Citrus.

78. Chilades trochilus, Freyer.

Moore as O. putli, Kollar. Dr. Moore gives as localities Kandy and Trincomali, and states that it is rare. It occurs not uncommonly at Colombo in June, August and November, but from its very small size and dull coloration may easily be overlooked. Fonnd also at Labugama in November and December. It is found from Enrope to Australia and in Africa. The larva feeds on Heliotropium strigosum, Willd.
79. Cyaniris akasa, Horsfield.

Not uncommon in the neighbourhood of Nuwara Eliya in May and November, always near water; also in the Punduloya district, and doubtless elsewhere in the hill conntry. It is found also in the hills of South India and in many of the islands of the Malay Archipelago (Sumatra, Java, Bali, Lombok, Celebes and Sambawa). It has never been bred.
80. Cyaniris puspa, Horsfield.

Moore as C. lavendularis, Moore. A species widely distribated over India and Malaya, and much subject to seasonal variation. Rare at Colombo, more common in the middle hill districts of Ceylon. The larva feeds on Xylia and Cylista in South India.
81. Ctaniris singalensis, Felder.

Originally described from Ceylon from specimens taken at "Kallupahane, about 3,000 ft., on 15th December." Rare at Kandy, not uncommon in the hill districts, particularly so near Nuwara Eliya in May
and November. Usually flies over the tops of bushes overhanging hill streams, and is consequently difficult to capture. The females are mach scarcer than the males and keep more to the jungle. It is found also in the Nilgiri Hills of South India, but has never been bred.

82. Cyaniris lanea, Moore.

Peculiar to Ceylon. Very common in the npper hill districts nearly all the year round, and the males may be seen in numbers settled on damp spots on the roads. The females are more asually met with flattering about tea bushes and low-growing jungle bushes. Its transformations are unknown.

83. Cyaniris limbatus, Moore.

This species is not given by Moore in his Lep. Ceylon. "It is very near to O. lanka, Moore, the latter, however, in the male beirg still darker on the apperside, the narrow black border still narrower, and the discal series of spots on the underside of the forewing arranged almost in a connected line, not well-separated and irregularly-placed as in C. limbatus, [this is very distinctive]. It differs from C. singalensis, Felder, only in the colour of the upperside in the male being of a deeper shade; the markings of the underside in that species are perhaps placed rather more in echelon." (de Nicéville, Butt. Ind., vol. iii, p. 109). It is found in the hill districts but not at the same elevation as O. singalensis, Felder, or C. lanka, Moore, Manders notes that he has not met with it in Nuwara Eliya or on the Horton Plains where the latter swarms. It is found in South India, Bengal, the Khasi Hills, and N.-E. Sumatra. Its transformations are unknown.

84. Zizera lysimon, Hübner.

Moore as Z. karsandra, Moore. Abundant nearly all the year round in the low country. Very widely spread, found in Europe, Africa, Teneriffe, Bourbon, Johanna, the Canary Islands, Mauritins, Madagascar, Arabia, almost, throughout Southern Asia, and Malayana to Australia. It is seasonally dimorphic, the form flying in the rains being naually larger and much darker than that found in the dryseason. The larva feeds on Amarantus.
85. Zizera gaika, Trimen.

Moore as Z. pygmza, Suellen, but Trimen's name has 14 years priority. Found in Ceylon in the same localities as the last, bat is not so abmidant. Found almost throughout Africa, Arabia, India and from Malayana to the Pacific. It has been bred on Neloonia in South India.

86. Zizera otis, Fabricius.

Moore as Z. indica, Murray. A common low country insect in Ceylon, and flies nearly all the year round. The three species of Zizera usually occur together, and may be at once recognized by their habit of futtering about amongst low herbage and grass within a few inches of the surface of the ground. Amongst other places they occur commonly on the Grlle Face at Colombo. Z. otis inhabits all India and across Southern Asia to Hong-Kong, Burma, the Malay Peninsula, the Philippine Islands, and probably most of the islands of the Malay Archipelago and the South Sea Isles. The larva feeds on Alysicarpus vaginalis.

87. Azanos ubaldus, Cramer.

Not given by Moore, but Mr. Francis A. Fairlie has taken it at Jaffna in July, and on the North Central Road. It is found in Arabia and almost throughout India. It has frequently been recorded from Africa as A. zena, Moore. Dr. Butler in 1897 wrote that the male of A. ubaldus has no belt of thickened lilac scales across the upperside of the forewing, these scales being present in A. zena, but if the femsles got mixed as to locality it would be no easy matter to sort them. Its transformations have not been recorded, but the larva is said to feed on the leaves of Acacia leucophlosa.

88. Azands Jrsods, Guérin.

Moore as A. crameri, Moore. Polyommatus jesous was described in 1847; Lycsena gamra, Lederer, in 1855; Lampides agave, Walker, in 1870 ; and Azanus crameri in 1881, these four names representing one. species. In Ceylon it is rare, and is found more especially in the hotter and drier parts of the island, though occasionally met with at Colombo. Wade got it at Hambantota, and Fairlie in the northern part of the Island rather commonly. It occurs in Africa, Syria, Arabia, and many localities in India. Its transformations are unknown.
89. Licienestias lycenina, Felder.

Originally described from a specimen taken at "Avisavelle, Ceylon," on December 7th. Not ancommon in Ceylon on the lower hills. It is found almost thronghout India, and in the Malay Peninsula, Sumatra, Borneo and Lombok. Its early stages have still to be discovered.
90. Talicada mysede, Guérin.

Occurs commonly bat locally in the low country and up to nearly 4,000 feet. It is found in South India, Sind, Orissa, Assam and Burma. Larva feeds internally on the fleshy leaves of Bryophyllam.
91. Everes argiades, Pallas.

Moore as E. parrhasius, Fabricius. Abandant everywhere in Ceylon. It does not appear to be found in Africa, but occurs in Europe, almost throughout Asia, Malayana, in Anstralia, and the isles of the Pacific, also in North America under a slightly modified form. The larva in Europe and America feeds on Leguminosæ, but it does not appear to have been bred elsewhere.
92. Nacaduba macrophthalma, Felder.

Not uncommon in the middle hill districts of Ceylon, and fairly common in the lower hills and in the neighbourhood of Colombo. It is found in many parts of India, the Malayan Islands, and in Anstralia. Its transformations are unknown.
93. Nacaduba hermus, Felder.

Moore as N. viola, Moore. It is a rare insect in Ceylon, but is probably overlooked from its resemblance to other species of the genus, "It can, however, be easily distinguished by the very acute apex and straight outer margin of the forewing, and posteriorly attenuated hindwing, with the outer margin very straight." (de Nicéville, Butt. Ind., vol. iii, p 147). Manders has taken a single specimen close to Colombo in November, and has notes of its occurrence at Haldummulle. It is widely spread in India, Malayana, Australia, and the South Sea Islands. It has never been bred.

94. Nacaduba atrata, Horbfield.

Dr. Moore in Lep. Cey. records N. atrata and N. prominens, Moore, as distinct species, but they cannot be satisfactorily separated. It is common in the middle hill districts and also in the low conntry of Ceylon. Like the last it has a wide range in India, the Malay Peninsula and Archipelago. Moore describes the transformations of N. prominens, the larva feeding on Vateria. In Southern India the larva of N. atrata feeds on Embelia.
95. Nacadjba noreia, Felder.

Described by Felder in 1868 from "Ninera Ellia," at abont 6,000 feet, taken on 24th December, 1864. Mr. de Nicéville has examined the female type example in the Natural History Museum at Vienna, and finds that it is the tailless form of Nacaduba ardates, Moore, which also has a tailed form recorded by Moore from Ceylon, and described by him in 1874. Manders finds that both forms occur together at Nuwara Eliya and Kandy at the same season, in May and June, and again in

November and December. In Colombo he has only taken the tailless form, which flies in November and December. Dr. Moore in Lep. Cey., vol. iii, p. 350, gives a note by Mr. E. E. Green regarding the two forms of N. noreia, from which one gathers that Mr. Green believes them to represent distinct species. Breeding alone can satisfactorily settle the point one way or the other. Mr. Thomas B. Butt writing from Densworth, A wissawella, Ceylon, under date the 3rd December, 1890, says: " N. ardates, tailed and tailless, is quite promiscuous here. The last fine day almost that we had I took nine on or near some buffalo droppings, four were tailless, five were tailed." N. noreia has a wide range in India and Malayana, and occars also in Northern Anstralia. Its larva has been bred on Acacia csesia in South India.
96. Jamides bochus, Cramer.

A very abundant species everywhere in Ceylon, from whence it was originally described, and occasionally migratory, at any rate in the hills. It occurs generally in India, in Burma, and Malayana. The larva feeds on Xylia and Butea in South India.
97. Lampides elpis, Godart.

A common seasonally dimorphic species in the middle and lower bills. The larva feeds on cardamoms, and at times causes considerable damage to the crop. It also eats the flowers and seeds of Kæmpfrria pandurata in South India. L. elpis has a very wide range in India and Malayana.

98. Lampides coruscans, Moore.

Strictly confined to Ceylon, where it is much less common than the last-named species, and found chiefly in the Kandy and Awissawella districts flying in the jungle. Its transformations are unknown.
99. Lampidrs lacteata, de Nicéville.
L. lacteata, de Nicéville, Journ. Bomb. Nat. Hist. Soc., vol. x, p. 36, n. 17, pl S, figa. 25, male; 26, female (1895) ; L. pseudelpis, Moore (nec Batler), Lep. Cey., vol. i, p. 95 (1881) ; id., de Nicéville, Batt. Ind., vol. iii, p. 165, n. 736 (1890).

Apparently confined to and rare in Ceylon, Moore gives no localities for it ; Manders has taken it at Kandy and Labugama in May; and de Nicéville has two pairs only from Ceylon with no precise locality recorded. It is probably frequently confounded with L. elpis, Godart, and has not been bred.

100. Lampides aeleno, Cramer.

Moore as L. alianus, Fabricius. Abandant everywhere, and highly
seasonally dimorphic; specimens taken at a considerable elevation in the dry cold weather (such as Nuwara Eliya in January) have the underside somewhat deep fuscous. It has a wide range in India, Indo-China, China, and Malayana, extending even to the islands of the Pacific. It has frequently been bred.
101. Catochrysops strabo, Fabricius.

A common species everywhere in Ceylon. It is found from India to Australia. It has frequently been bred; the larva feeds on Ougeinia, Schleichera and Dolichos.
102. Catochrysops lithargyria, Moore.

Not common in Ceylon, from whence it was originally described, but occurs both in the low (Colombo) and hill (Nuwara Eliya) conntry. It is very closely allied to O. strabo, Fabricins, the females been indistinguishable. The males, however, are readily differentiated, the male of O. strabo being lilac, of O. lithargyria a pale silvery blue. It has been recorded from many localities between India and Australia where C. strabo is found, bat never without that species. Its transformations are anknown.

103. Catochrysops cnejos, Fabricius.

Very common everywhere in Ceylon, particularly so in the Northern Province. Its range is immense, being found from India throngh China, Malaya and Australasia to the South Sea Islands. It has frequently been bred on various plants of the Natural Order Leguminose.

104. Catocheysops pandata, Horsfield.

Local and not common, found towards the north of the island and along the North Central Road, also at Hambantota. It is not nearly as widely spread as the other species of the genus given above, but occurs all over India and in many of the Malayan islands as far east as Bali and Sumba at all events. It is highly seasonally dimorphic, and the larva feeds on the young fronds of Cycads.

105. Tarucus thbophrastus, Fabricius.

Prefers the hottest and driest parts of the Island, such as Hambsntota in the south and the Jaffna district in the north, flying in July. It is found in Northern Africa, Sacotra, Arabia, in many parts of India, and in the Malayan island of Sumba. Dr. Holland has described a I'arucus clathratus from Celebes, which probably is the same species. The transformations of T. theophrastus are well known, the larva feeding in Zizyphus.

106. Tarucus telicands, Lang.

Moore as T'.plinius, Fabricius. An uncommon but widely distribated insect in the low country of Ceylon. It has a wide range, being found in Africa, Arabia, India, Burma, the Malay Archipelago, Formosa, Anstralia, and the islands of the South Sea. Ite transformations are well known, the larva feeding on the leaves of Sesbania.

107. Castalids rosimon, Fabriciug.

Common in the low country jungles and on waste land in Ceylon. It has a wide range in India, Barma, the Malay Peninsula and onwards through the Malay Archipelago to Flores. It has frequently been bred on Zizyphus.

108. Cabtalius ethion, Doubleday and Hewitson.

Found in Ceylon in the same localities as the last bat is not so common. It appears throughont the year except in the very dry weather. In India its range is more restricted than the last, bat extends to the east as far as Flores at any rate. The larva feeds on Zizyphus.
109. Castalius decidia, Hewitson.

Moore as C. decidia and O. hamatus, Moore. It is seasonally dimorphic, the rains form is C. hamatus, an intermediate form is true C. decidia, while the dry-season form is O. interruptus, de Nicéville. It is found in Ceylon in the same localities as the other two species of the genus, as for instance at Heneratgoda in August, and at Labugama in November and December. This species is confined to India, Burma and Ceylon, not even occurring in the Malay Peninsala. Its transformations are known, the larva feeds on Gonania and Zixyphus.

110. Polyomиatos beticus, Linnæus.

Moore as P. beticus. An abundant species in Ceylon, found everywhere and at all elevations. Occurs almost everywhere in the Old World. Its transformations are well known.

111. Amblypodia anita, Hewitson.

Moore as A. naradoides, Moore, and A. darana, Moore, which are synonyms of A. anita. Common in the low country of Oeylon. The female is dimorphic, being smalt-blue in one form on the upperside, uniform pale violet-brown in the other. It is found in South India, North-East India, Assam, Burmn, the Andaman Isles, Siam and Borneo. The larva feeds on Olax. In Moore's plate (Lep. Cey., pl. xliii) of this J. II. 26

112. Iraota timoleon, Stoll.

Moore as I. mecenas, Fabricius, which is a synonym of I. timoleon Found in August and probably other months in the Northern, Eastern and Soathern districts. It occurs also in India, China and seqveral of the Malayan islands. The larva feeds on Ficus.

113. Surendra quercetordm, Moore.

Moore as S. discalis,' Moore, which differs only from the typical form in being somewhat smaller. 'In Ceylon it is abundant in the low country, and up to about 2,400 feet. It is found in many parts of India and Burma, in Java and Sambawa. The larra feeds on Acacia.

114. Arrhopala pibama, Moore.

Moore as Nilasera pirama. A local Ceylonese and Sonth Indian form of the widely distributed A. centaurus, Fabricius, but easily discriminated in both sexes by the brilliant blue (not dull purple) coloar on the upperside of both wings. It is very ceqmmon in the neighbourhood of Colombo, and may often be seen flying about the mangoe trees in the Victoria Park just before sunset. Moore records it from. Galle and Kandy. The parent form, from which many local races have been derived, has a wide range in India, Burma, Indo-China, nnd Malaga. The larva appears to feed on a great variety of plants.

115. Abrhopala amantes, Hewitson.

Moore as Nilasera amantes. Found in the same localities as the last, and is perhaps even more abundant. From A. pirama, Moore, it may be easily distinguished by the presence of a well-formed lobe at the anal angle of the hindwing. It has a wide range in Indin, and occurs also in Barma, the Andaman Isles, Bali, Celebes and Sumba. Its transformations are known, the larva feeding on a variety of plants.

116. Arrhopala abseds, Hewitson.

Not hitherto recorded from Ceylon, but Mr. F. M. Mackwood informs us that it occurs in the Ratnapura district, and there is a single example in the Colombo Museum. It is found very rarely in Sonthern India, but is common in the North-East, in Burma, the Malny Peninsula, and many of the Malayan islands. Mr. G. C. Dudgeon has bred it in Sikkim, but its transformations have not been described. The larva probably feeds on Sāl (Shorea robusta).

117. Cubrtis thetis, Drury.

Moore as O. thetys. Not uncommon at Kandy, Trincomali, and in the low country generally. It is common in many parts of India and has been recorded from Indo-China and several of the Malayan islands. Its transformations are well known.

118. Zesios chrybomallus, Hübner.

Very abundant in the low country about cashew trees nearly all the year round, bat more especially in November. It is a very constant species, showing no variation. It occurs locally in India at Barrackpore near Calcutta, the Malda district in Bengal, Chota Nagpur, the Central Provinces, Bombay, Ganjam, the Nilgiri Hills and in Travancore. It has been frequently bred.

119. Camena deta, Moore.

Moore as Pratapa deva. If Camena is held to be too near to Camaena (the latter name haring priority), then Pratapa must be used for the genus. Not ancommon in the low country and ap to about 4,500 feet. It is found also in many parts of India and Barma, and in Nias Island, Java, and the Philippines. Its transformations are known, the larva feeding on Loranthus.

We are unable to state definitely, or even perhaps approximately, the number of species of the genus Aphnæeus which are found in Ceylon. It is without doubt a most puzzling genus, and in many cases it is obviously difficult to sny where one species ends and another begins, and until some one undertakes breeding experiments on an extensive scale and records them carefully, it must be a matter of individual opinion as to how many there are. The following species have been recorded from Ceylon.
120. Aphneus volcanos, Fabricius.

Not recorded by Dr. Moore in Lep. Cey. from Ceylon, where, however, it is a very common low country insect. It is a common species also in India, and occurs in N.-E. Sumatra and Java. Its transformations are known, the larva feeding on the leaves of Clerodendron.
121. Aphneds fusca, Moore.

This is probably identical with A. vulcanus, Fabricins, and is always found with that species. Hitherto it has only been recorded from Ceylon. It has not been bred.
122. Aphimus schistacea, Moore.

Occurs commonly in August in the Dambool district, and also in the immediate neighbourhood of Colombo. It has been recorded from Sattara in the Bombay Presidency, from' the Nilgiri Hills, and from Myingyan in Upper Burma. It bas not been bred.
123. Aphneves lohita, Horsfield.

Moore as A. lasularia, Moore. Found in the same districts and at the same seasons as the last. It has a wide range in India, Indo-China, China, Hainan Island, and Malaya. Its transformations are known, Dr. Moore says the larva feeds on Convolvulaces.
124. Aphnates zebinnus, Moore.

Described by Dr. Moore in 1884 from Ceylon only, bat omitted by him from Lep. Cey., vol. iii, published in 1887. We have failed to recognise the species. Mr. J. J. Walker records it from Hongkong in Southern China.
125. Aphnaus ictis, Hewitson.

Very common in the Dambool and Anaradhapara districts of Ceylon in August. It is widely spread in India, bat has never been bred. The A. vulcanus, var. maximus of Elwes, from Burma, is a form of A. ictis, and may be kept distinct on account of its very large size.
126. Apheifus nubilus, Moore.

Described from Ceylon only by Dr. Moore, taken by Mackwood at Wattegama in May. It is very doubtfully distinct from the last, though Mr. Frank A. Fairlie, who has a very extensive acquaintance with the imagines of the genas in life as they occar in Ceylon, brings forward arguments to show that it is a distinct species. It can only be satisfactorily settled if it be so or not by breeding, though a critical examination of the prehensores of the male would doubtless shed some light on the subject.
127. Apenelos greeni, Heron.

Spindasis greeni, Heron, Ann. and Mag. of Nat. Hist., sixth series, vol. xvii, p. 180 (1896).

Described from a single male captured near Punduloya, on the summit of the Great Western range of hills in Ceylon, at this point attaining a height of about 6,000 feet. Mr. de Nicéville has examined this specimen in the British Museam, but would prefer to express no opinion regarding its validity as a distinct species.
128. Tajuria cippos, Fabricius.

This species is usually known and is described by Moore in Lep. Cey. as T. Longinus, Fabricias (see Aurivillius, Ent. Tids., vol. xviii, p. 146, nn. 48, 49 (1897). It is not ancommon in the lower and middle hill districts of that island, and has a wide range in India and Malaya. It has often been bred, the larva feeding on Loranthaces.

129. Tajuria jbiana, Moore.

Not recorded by the describer from Ceylon. It has been taken in the Jaffna district of Ceylon in July by Mr. F. A. Fairlie. It is closely related to T. cippus, Fabricins, but may be easily distinguished by its slatey-blue coloration on the upperside of both wings in the male. The females of the two species are difficult to discriminate. It is somewhat widely spread in India, but has not been bred.

130. Hypolycesna nilgibica, Moore.

Known only from the Nilgiri Hills and from Ceylon, where Mr. Fairlie has taken it near Jaffna in the North Central Province in July, Mr. Mackwood at Matale and at Dolosbage in March, and Manders at Heneratgoda in June. Its transformations are unknown.
131. Cheritra jafras, Butler.

Moore as C. pseudojafra, Moore. Confined to South India and Ceylon, replaced in Northern India, Burma, Indo-China and Malaya by C. freja, Fabricius. In Ceylon C. jaffra is not uncommon in low country jangle, extending up to 2,500 feet elevation. Its larva feeds on Xylia.
132. Rathinda amor, Fabricius.

Not rare about Kandy and in the low country jungles, found also near the rock fortress of Sigiri in August. It is found in many parts of India, even in the city of Calcutta. Its larva feeds on many plants, and is probably the one figared by Moore in Lep. Cey., vol. i, pl. xxxiv, fig. 1b, larves and pupse as that of Spalgis epius, Westwood. It is also figured in Horsfield and Moore's Cat. Lep. E. I. C., vol. i, pl. xii, figs. 7, larva; 7a, pupa (1857).

133. Horaga cingalensis, Moore.

Moore as H. ciniata, Hewitson. A very rare insect, recorded by Moore from Kandy, where a few specimens have been taken; possibly also to be found in the lower hills. If really distinct from the Indian H. onya, Moore, it is confined to Ceylon, aud its transformations are naknown.

134. Catapgcilma elegans, Druce.

Moore as Cataprecilma elegans. This beantiful insect is common in the lower hills of Ceylon, and hardly differs from Indian and Malayan specimens. If the Indian is distinct from the Malayan form, Mr. H. H. Drace suggests the name major for the former. The larva feeds on Terminalia.
135. Loxdra arcuata, Moore.

Very common in the low couutry of Ceylon ap to about 2,500 feet, and is closely allied to L. otymnus, Cramer, of India and Malaya. Its transformations are kuown, the larva feeding on Smilax.

136. Deddorix epijarbas, Moore.

A common low country insect in Ceylon, and widely spread in India, China and Malaya. Its larva is an internal feeder, eating the fruit of the pomegranate, horse-chestnat, and Oinnarus. It papates inside the frait.

137. Rapala schistacea, Moore.

Not given by Moore in Lep. Cey. It is a species of wide distribution in India and Malaya, and is probably frequently overlooked from its close resemblance to R. lazulina, Moore, from which the male is distinguished by having a brilliant metallic blue gloss in certain lights on the apperside of both wings; the females of the two species are very similar. In Ceylon it has been taken by Mr. Fairlie in the Northern Province, and occurs also in the Haldummalle district. It has been bred often, the larva feeding on a great variety of plants.

138. Rapala laneana, Moore.

The type, a female, was described by Moore in Lep. Cey. as Deudorix lankana from a specimen taken by Capt. Wade in the Kottawa forest near Galle. Manders has only seen three specinens of this rare insect, two males in the Colombo Museum and one in his own taken in October, all from the low country. The males have even a more brilliant and extensive iridescent purple gloss than has R. schistacea, Moore, and may also be readily distinguished by the ferruginous (not grey) under surface; also by its larger size. Elsewhere it has been recorded only from North Kanara, the Nilgiri Hills, and in Travancore. It has never been bred.
139. Rapala lazolina, Moore.

Occurs in Ceylon at Kandy, Kaduganawa and the Haldummulle district, and has been recorded from the Nilgiri Hills of South India.

Is it really distinct from R. varuna, Horsfield ($=R$. orseis, Hewitson)? It has never been bred.

140. Rapala melaypus, Cramer.

Not given by Moore in Lep. Cey. Mr. F. Fairlie writes "I have taken only males of this species at Manipai near Jaffna, about half a dozen, on a windy day on the sheltered side of some tree, tamarind for choice, which is in fall flower in July, and attracts a great number of batterfies." The northern parts of the Island have by no means been so thoroughly explored for butterflies as the other portions, and Mr. Fairlie has added several species to the Ceylon list from thence. A more extended and prolonged tour would probably resalt in farther additions, most of which would probably be closely allied to or identical with Soath Indian species. R. melampus may at once be distingaished from the other species of the genus found in Ceylon by the wings of the male on the apperside being scarlet instead of blue; those of the female are dull brick red. It has a wide range in India, and occurs also in Burma, Sumatra, Nias, and Java. The larva feeds on Ougeinea and Zizyphus.

141. Bindahara sugriva, Horsfield.

Moore as B. phocides, Fabricius. Uncommon in the low country, particularly about Kandy, where Capt. Wade states, however, that he found the male plentiful in the Botanical Gardens. It is found occasionally as high as 4,000 feet elevation, and is rare at Haldummalle. Mr. W. H. Miskin in "A Syn. Cat. of the Lep. Rhop. of Australia," p. 69 (1891), placed under B. sugriva, Horsfield, the Myrina isabella of Felder, the B. phocides of Moore nee Fabricius, and the M. jolous of Felder as synonyms, and makes the following remarks:-"With great regard for the opinions of Messrs. Distant and de Nicéville, I have little donbt this, with B. phocides, Fabricins, and B. areca, Felder, all represent one rather variable species. In one specimen I have, from Ceylon, the blue colour in the apical region of the hindwing is restricted to a mere marginal line, only just perceptible; in a Cape York [North Australia] example the blue patch is as broad as long, and nearly touches the apical angle, the underside of both being exactly alike, and nearly as dark as in Horsield's figure. The development of the white area in the hindwing of the female, and the lighter or darker shading of the underside, is so variable as to be quite unreliable for specific distinction." It would be interesting to know if the males of B. sugriva in Ceylon are often as variable as Mr. Miskin would appear to consider the species to be throughout
the wide range of the genus. The many specimens we have seen from Ceylon are quite constant. We have specimens from South India, Sumatia and Java. The larva feeds on the inside of the fruit of a creeper in Sonth India.
142. Virachola isocrates, Fabricins.

Common in the driest parts of the Island and along the North Central Road, in July. Wade records it from Hambantota in July. It occurs also in many parts of India, the larva feeding on the fruit of the pomegranate, tamarind, Diospyros and Randia.
143. Virachola perse, Hewitson.

All the remarks given above for V. isocrates apply equally well to this species, except that the larva has been bred from the fruit of the pomegranate and Randia only.

Family PAPILIONID雨.
 Subfamily Piebing.

144. Leptosia xiphia, Fabricins.

Moore as Nychitona xiphia. Widely distribated over Ceylon and not uncommon in low country jungles. It is very constant, hardly varying at all in coloration and markings. It is found almost throughout India and Mnlaya. The larva feeds on various capers (Capparis).
145. Delias eucharis, Drury.

Abundant everywhere in Ceglon, more particularly in the low country. Common also in India; Dr. Butler has recorded it from Burma and Penang! The larva feeds on Loranthus as usual in this genus.
146. Priongris sita, Felder.

Fairly common at moderate elevations in Ceylon, Manders has taken it in Punduloya in January, and has noted its occurrence amongst other places at Haputale, 5,000 feet, Koslande, 2,500 feet, Behilul Oya, 2,200 feet, and Wellaway, 500 feet. Mackwood records it from the hills from 2,000 to 6,000 feet. It is a splendid mimic in both sexes of the highly protected Delias eucharis, Drury, but its more rapid and somewhat darting flight makes it easily distinguishable when on the wing. The acntely-pointed apex of the forewing is also a noticeable feature even in flight. The female is extremely rare. It occurs rarely in South India, and has been bred by Mr. E. E. Green in Ceylon on Capparis.
147. Catopsilia crocale, Cramer.

Moore as 0 . crocale and 0 . catilla, Cramer, but the former is the older name. It is a very variable species, which does not appear to be dependant on the seasons for its various forms. It is very widely distributed in Iudia, Malaya and Australasia, nnd seems to be variable wherever it is found. It is largely given to migrating in Ceylon and Southern India, and again in Java. Its larva feeds on Cassia.

148. Catopsilia pyrantee, Linnæus.

Moore in Lep. Cey. gives four forms of this species as separate species, C. gnoma, Fabricius, C. ilea, Fabricius, O. chryseis, Drury, as well as typical C. pyranthe. Manders notes that as far as his observations go these four forms are not dependent on season, but appear indiscriminately nearly throughont the year, those flying in the dryseason from February to April being a little smaller than those found daring the rest of the year. O. chryseis is perhaps not as common a form as the others. It takes part in the low country flights. It occurs everywhere in India and Malayn, the larva feeding on Cassia.

149. Terias libythea, Fabricius.

Moore as T. drona, Horsfield. Dr. Butler considers that T. senua and T. lerna, both of Felder, represent the wet-season form of this species, T. drona is a form intermediate between the dry and wet-season forms, and the dry-season form is true I'. libythea, with T. rubella, Wallace, and T. hainana, Moore, as synomyms. In Ceylon it is common in open country between 2,000 and 5,000 feet. It has a very wide range in the East. Like all the rest of the genus, the larva feeds on the Leguminosre.

150. Terias venata, Moore.

Moore as T. cingala, Moore, and T. ramu, Moore. Dr. Butler omits the former species from his "A Revision of the Pierine Butterflies of the genns I'erias from the Old World." (Ann. and Mag. of Nat. Hist., seventh series, vol. i, p. 64, n. 21 (1898). He gives the range of T. venata "From the Himalayas southwards to Ceglon, and probably eastwards through North China, for we have it from Chusan Island and from the Philippines." He also notes that "The seasonal (?) forms differ less than usual: T. rama [and also T. cingala] is probably the best-marked wet type, T. santana, Felder, intermediate, and T. venata (of which Tr. pallitana, Moore, is the female) the dry ; but, on the other hand, it is possible that, as seems to be the case in the closely allied T. betheseba, Janson, from Japan and Hainan Island, no differing dry form may exist, and the slight J. II. 27
discrepancies in the pattern of the upper surface or the definition of the markings on the under surface may be partly local and have a subspecific value. The fact that we have the extremes from the Auamully Hills in South India prores that they are not permanently separated as distinct species." Without seeing the type specimens of I'. cingala it is difficult to say exactly what it is, it may be that it is a form of T. libythea, Fabricins, rather than of T'. venata. In Ceglon 'I'. venata is distinctly variable, and is found there at the same elevations as the last and throughout the year. It has not been bred as far as we are aware.

151. Trias hecabe, Linnæus.

Dr. Butler has recently stated in his paper on Terias above referred to that 'I'. hecabe does not sccur in India or Ceylon but is found in Southern China, while what we have been accustomed to call I'. hecabe is the T. suava of Boisduval, which Butler restricts to India and Ceylon, and Burma south wards to Malacca including the Mergui Archipelago. 'The only difference Butler gives between T. hecabe and T. suava is that the former is " broader-winged." According to the late Capt. E. Y. Watson, T. hecabe may be known "By never having more than two streaks or spots in the discoidal cell on the underside of the forewing in addition to the reniform spot on the disco-cellular nervules." Again "The dryseason form at the apex of the forewing on the underside has a more or less strongly pronoanced brown patch." Manders notes that the larva feeds in his componnd in Colombo on the leaves of the Madras Thorn, and that he has considerable experience of the insect as it is so common. The spots in the cell of the forewing on the underside are sometimes reduced to one or even absent altogetber. The brown patch mentioned above is not absolutely indicative of the dry-season form; it varies considerably in size, and is found in the females at the commencement at any rate of the wet-season. True T. hecabe is a wet-season form, besides which Moore records from Ceylon T. hecabeoides, Ménétriès, also a wet-season form, and 'I'. simulata, Moore, a dry-season form. T. hecabe is adundant everywhere in Ceylon aud occurs at all seasons. The larva feeds in Leguminosæ.

Dr. Butler records T. nicobariensis (recte nikobariensis), Felder, from the Andamans, Nicobars, Java, Sumatra, Flores, Borner, and the Philippines, and notes that the British Museum has "A female apparently referable to the intermediate form of this species, but said to have been taken in Ceylon." He gives T. phanospila, Felder, as a synonym, and says it is the dry-season form. Mr. de Nicéville has examined the type of T. nikoburiensis at Vienna, and cousiders it to represent a variety of T. hecube only.

152. Terias silietana, Wallace.

Dr. Moore does not record 'T. silhetana from Ceylon, but gives T. citrina, Moore, which is a dry-season form, 'I'. rotundularis, Moore, a wet-senson form, T. uniformis, Moore, also a dry-season form, and T. templetonii, Butler, also a wet-season form. The butterfly is common in the middle and lower hill districts, bat is only found rarely at the sea-level. It varies much in size, markings and in the form of the wings. I'. citrinn has always (?) three spots in the discoidul cell of the forewing on the underside exclusive of the reniform markings on the disco-cellular nervules, and sometimes has nud at other times lacks an ochreons apical marking. A larger dry-season form 175 inches in expanse has a well-developed and almost square ochreous patch at the apex of the forewing on the underside, with the usurl three spots in the cell. In one specimen in Manders' collection one of these spots (the basal one) is almost obsolete. 'The form I'. rotundularis may be known by the more rounded shape of all the wings, which gives it a peculiar facier, so mach so that Mr. Mackwond is strongly biased in favour of its being a distinct spiecies. Mr. Ormiston of Kalupahani recently informed us that from one batch of eggs (whether laid by the same parent or not is anknown) he has bred all the above forms. In Ceylon the larva feuds on Albizzia Moluccuna and is gregarions.
153. Terias sart, Horsfield.

Recorded by Dr. Butler from Ceylon, the Nilghiris, Burma, the Mergui Archipelago, Malacca, Sumatra, Java, Borneo, the Sulu Archipelago, and Palawan. We have specimens only from Sumatra, Java, Bunka and Borneo. Dr. Moore also omits it from Ceglon. Watson says "T. sari is a very constant and easily recognisable species: it has on the underside only a single wavy line in the discoidal cell of the forewiug, in additiou to the usual disco-cellular markings, and the whole of the apex widely and evenly chocolate-brown, and also has a more or less diffused dark spot towards the outer angle."

154. Ixias cingalensis, Moore.

Moore as I. cingalensis and I. pirenassa, Wallace. In describing the latter Wallace wrote "Male, costa mach curved, hindwing sabtriangular. Upperside, both wings like 'Thestias' pyrene, Linnæus [which he restricts to N. India, Bengal, China], but the transverse black band always touches the discoidal spot of the forewing." Its habitat he gives as Bombry and Madras. Moore appears to have kept the two species separate chiefly because I. cingalensis has the underside uniformly yellow without markings, while I. pirenassa is considerably
marked with purple-brown spots. These characters are due to season, the first occurring in the wet, the second in the dry-senson. Watson keeps I. cingalensis and I. pirenassa distinct, the former having the yellow ground-colour of the forewing on the upperside of the male entering the second median interspace and filling the angle at the origin of the second median nervule, while in the second the yellow groundcolour does not enter the second medinn interspace, and he says that I. pirenussa is not found in Ceylon. Certainly Ceylon has ouly one species of the group of I. pyrene, Linnæus, but whether or no the Ceylon form can be always separated from the parent form is in onr opinion extremely doubtful. Butler in his Revision of the Butterflies of the Genus Ixias (1898) has given I. cingalensis as the sole species of the pyrene group from Ceylon. He notes " I. cingalensis can be picked out at sight from a crowd of nearly allied forms, but the distinction given above [by Watson] is useless as a guide; its chief peculiarity is the narrowness and angularity of the orange belt ncross the forewing on the upperside in the male combined with the sharply defined and perfectly straight inner edge of this belt from the subcostal nervure to the first median nervule." He restricts I. pyrene to China, giving I. sesia, Fabricins, from Burma. I. pirenassa he records from Western India southwards to Depalpur. Watson restricts I. pyrene in India to Burma not extending west of Assam. In Ceylon I. cingalensis is found commonly all over the low country, and is pesuliar to the island. It has not been bred.

155. Ixias marianne, Cramer.

Common in the hot dry conntry, not found above sea-level, and flies in June and October. It is found also in peninsular and continental India, and has been bred. The rainy season form is much larger and darker than the dry-seasou form.

156. Teracolus amata, Fabricius.

Moore as Idmuis modesta, Butler. Moore records it from the low country, found abundantly in the Dambool District and north of it, also at Hambantota and in the Mullaitiva District. Manders got it commonly but worn in August at Anaradhapara. The female is dimorphic, Form I being salmon-coloured like the male, Form II being very pale primrose-coloured or almost pure white. It occurs in Africa, Arabia, Syria, Persia and many parts of India. Its transformations are known, the larva feeding on Salvadora.
157. Teracolus eticharis, Frbbicius.

Moore as Callosune eucharis. Dr. Moore gives no exact record of
the occurrence of this species in Ceylon. Mr. Pole says that it is not foond sonth of Pattalam, nor along the east coast as far as Trinenmali as far as he is aware. It flies in June and December, has apparently two broods, is a very local species, and is a lover of the sun even on wind-blown and arid sea-shores. It occurs also in South India. Its transformations are unknown.

158. Teracolds limbatus, Butler.

Moore as Onllosune limbata. Moore records it from Hambantota, from the Trincomali side of the island, and from Vavoniga Vilanknlam. Mr. Pole notes that it is found as far south as ten miles north of Negombo on the west coast, from Tangalle to Trincomali along the sonth and east coast, rejoicing in tall grass away from the wind, and used to be common in Fort Frederick, Trincomali, all the year round. It is confined to Ceylon, but is very close indeed to the Persian and Indian T. etriid, Boisduval, differing thereform only in the usually broader black outer margin to the hindwing on the apperside in the male. It has never been bred.

159. Teracolds danab̄, Fabricius.

Moore as Oullosune danee and C. sanguinalis, Butler. Our only record from Ceylon of this species is North Province, March, Dr. Moore gives no locality for it, but Mr. Pole says it is found in the same seasons and in the same localities as T. eucharis, Fabricius. Dr. Butler sanys that T. danaë is the wet-season furm, T. sanguinalis, Batler, is an intermediate form, and T. taplini, Swinhoe, described from Bombay and Pooua, is the dry-season form. It is found in Persia, and in Western and Southern India. Its transformations have not been recorded.

160. Teracolus tripuncta, Butler.

Moore as Idmais tripuncta. Recorded by Moore from Puttalam, rare in January. Mr. Pole says that it is not found sonth of the Batticaloa river, twenty miles south of Pattalam, and loves the glades along the edges of the forest, flying in June and October. Mr. Fairlie notes its nccurrence along the North Central Road in July, the females flying in the morning between seven and eight o'clock, the males during the hottest part of the day at a very rapid rate and going right away without settling when once disturbed. It is found also at Manaar in January. It has a near ally in T. fausta, Olivier, which is found in Syria, Asia Minor, Persia, Baluchistan, Afghanistan, Sind, the Punjab and the Bombay Presidency; T. tripuncta being found also in the Bombay Presidency, the Central Provinces, South India, and along the east coast of India as far north as Orissa. It has never been bred.

161. Belenois mesentina, Cramer.

Moore as B. taprobana, Moore. Mr. H. Fruhstorfer in Berl. Ent. Zeitsch., vol. xlii, p. 326 (1897)•has described the Ceylonese form of B. mesentinu as B. mesentina fervidior, which in any case must fall as a synonym to B. taprobana. The lightest marked examples from Ceylon can be exactly matched with the darkest examples from India, so, although Ceglonese specimens average darker than Indian ones, we do not consider that the Ceylonese race can be justifiably keep distinct, even as a local form. Dr. Butler in Trans. Ent. Soc. Lond., 1898, p. 435, notes :-" We have a very extensive series of this species [in the British Museum], B. angusta = agrippina = lorilaca being the wet phase, B. mesentina = syrins intermedinte, B. auriginea dry, and B. taprobana being an insular dry phase differing in the blacker outer border to the forewing of the male, on which the subapical spots are less prominent." In Ceylon B. mesentina is uncertain in its appearance, but is abundant in the low country when it does occur, and then joins in the migratory flights, June aud July, and again in November and December. It is found in Madagascar, Africa, Arabia, Persia, Syria, Afghanistan, Balnchistan, and throughout India. It lias often been bred, the larva feeding on Capparis, and A. Grote says on Zisyphus also.

162. Appias narendra, Moore.

Moore as Hiposcritia narendra. Rare in Ceylon, recorded by Mackwood from the hills 2,000 to 4,000 feet. It is much more common in Southern India, being replaced in North-Eastern India, Burma, and Indo-China by the allied A. indra, Moore. It has never been bred.

163. Appias neombo, Boisduval.

Originally described from Brazil, neighbourhood of Bahia and Fernambouc, but Boisduval evidently doubted the correctness of this locality as he wrote "Should not this species be rather from the East Indies ?" We include it here solely on Dr. Moore's identification, in Lep. Cey. he records it as Catophaga neombo, and figures the male and Form I of the female, also describing the female Form III as a variety, this form he had previously figured in 1857. As regards his figare of the male, de Nicéville has none from Ceylon which match it, but he possess two males from North Kanara and one from Ootracamund which agree with it fairly well. Moore's figure of the white female Forn I in Lep. Cey. is probably only a pale form of the female of A. albin, Boisduval, while his female variety is the yellow female Form III of the same species. Boisduval's description evidently applies to a female, us no male Appias has a figure-of-3 black band on the uuderside of the
forewing. What is wanted to clear up the uncertainty regarding this species is a figure of Boisiduval's type specimen, this being probably in M. Charles Oberthür's possession. We know nothing of the occurrence of A. neombo in Ceylon, sud do not quote Dr. Moore's localities for it, as his specimens were based on incorrect identification. It has not been bred.

164. Appias albina, Boisduval.

Moore as Catophaya venusta, Moore. In this species the female is trimorphic (in A. purlina, Cramer, it is dinorphic), Form I having the the ground-colour of the underside wholly white except a small patch of yellow at the costal base of the forewing; Form II having the ground-colour of the underside of the forewing at the apex and the entire lindwing chrome-yellow; and Form III having the underside of both wings as in Form II, but the upperside of both wings is also yellow. The male differs from that sex of A. patilina in having the forewing apparently less broad and the apex more produced and not slightly trancated, the outer margin is straighter, not so concave, and the discoidal cell appears to be longer and narrower; the black markings on the upperside are extremely variable in both species. It is particularly common in Ceylon, occurring wherever A. paulina is found and at the same seasons. It occurs all over India, in Burma, the Andaman Isles, the Malay Peninsula, Indo-China, China, the Malay Archipelago and Australia. It has never been bred.

165. Appias padlina, Ciramer.

Moore as Catophaga galene, Felder, and C. Iankapurr, Moore. This apecies was orixinally described from Tranquebar on the Coromandel Coast of South India, and from Batavia in Java. As far as Dr. Moore's descriptions of C. galesze and C. lankapura go they are fairly accurate but he does not realize that A. paulina is dimorphic in the female, as he gives the Form I only for C galene, and Form II only for C. lankapura, nor that the extent of the black markings on the npperside of the male on which he lays stress to distinguish that sex of the tiwo species is unimportant, being very variable, this variability apparently not being due to seasonal canses, as the lightest and heaviest marked specimens occur in the same month. The female is dimorphic, there being no Form III as in A. ulbina, Boisduval. For two reasons there is a slight doubt in de Nicéville's mind as to whether the name parlina should be applied to this species. The first is that Cramer described it from Tranquebar and Java. As far as de Nicéville is aware, the species does not occur in South India, ouly in Ceylon, but it is more than probable that many

Ceylonese butterflies were considered by the old authors to have come from Tranquebar, the port of shipment, which were really not caught there, but close by in Ceylon. Java is probably altogether an incorrect locality. Secondly, in one particular (though otherwise it is excellent and unmistakable), Cramer's figure (that of a female) differs from our specimens in that the upperside of the forewing shews four white spots on the apical white area while there should ouly be three, and moreover these spots instead of forming a curved line as they do in our specimens are shewn in pairs in echelon. As, however, this discrepancy is probably due to incorlect drawing, and there is no other species known which fits the fignre better than the present one, de Nicéville has no doubt that the figure was taken from our species, especially as it is immensely common in Ceylou, is given to migrating, and is the most likely one to have been obtained by the old authors. L. de Nicéville's identification of this species does not coincide with that of Dr. Batler's as set forth by him in Ann and Mag. of Nat. Hist., seventh series, vol. ii, p. 397, n. 10 (1898), de Nicéville believing that A. paulina is strictly confined to Ceylon, Butler recording it from India, Indo-China and Mulaya. Dr. Butler also gives Catophaga leis, Hübner, as a synonym of Catophaga paulina, de Nicéville believing that species to be quite distinct. A. paulina is found all over Ceylon, but is more common at the commencement of the monsoons than as any other times, when it migrates in immense swarms. Strangely enough it has never been bred.

166. Appias libythea, Fubricius.

Not common in Ceylon and mostly confined to the low country in the north and extreme south. The extent of the black markings on the upperside of the forewing in both sexes is variable. Two females in Manders' collection from the hill country, 4,500 to 5,000 feet, are mach more heavily marked than those from the Hambyamma Tank, 500 feet. It is found nearly all over India. The larva as usual in the genus feeds on Capparis, but it also eats the leaves of Cratæva.
167. Appias taprobana, Moore.

Moore as A. taprobana, and A. aperta, Butler ($=A$. vacans, Butler). This species is the South Indian and Ceylonese local race of the widelyspread A. hippo, Cramer, of Northern India, Barma, Malny Peninsula, Indo-China, China, and the Malay Archipelago. In Ceylon A taprobana is an abundant insect in the low country. The larva feeds on capers (Cupparis) as usual.

168. Hebomoia australis, Butler.

Moore as H. glaucippe, Linnæus. Dr. Butler in Ann. and Mag. of Nat. Hist., seventh series, vol. i, p. 290, n. 2 (1898) has separated off the Sonth Iudian and Ceylonese H. australis from the North-Eastern India, Burma, Mulay Peninsula, and China H. glaucippe. The male is almost identical with H. javanensis, Wallace, from Java, but is smaller than H. glaucippe; the female differs from H. javanensis, and both sexes from H. glaucippe by the great reduction, and in some cases almost complete absence, of the black line separating the apical orange patch from the basal half of the forewing on the apperside. H. australis is abandant in the low hills of Ceylon, occurring very occasionally at Colombo; it is very common at Kandy. The female is much scarcer than the male. The larva feeds on Capparis and in South India also on Cratreva.

169. Hophina nerissa, Fabricius.

Moore as H. phryne, Fabricins, and H. zeuxippe, Cramer. Dr. Butler in Aun. and Mag. of Nat. Hist., seventh series, vol. iii, p. 211, n. 46 (1899), gives H. phryne with Papilio evagete, Cramer, P. zeuxippe, Cramer, P. cassida, Fabricins, and H. pallida, Swinhoe, as synonyms, from India, Ceglon and Java. On page 211, n. 47, under H. hira, Moore, he gives Pieris copia, Wallace, and Appias dapha, Moore, as synonyms, from Barma. On page 212, n. 53, he gives H. nerissa, with Papilio amasene, Cramer, and \boldsymbol{P}. coronis, Cramer, as synonyms, from Nepal, Darjeeling, Tonkin and China. Mr. de Nicéville arranges the names quite differently. Under H. nerissa from Ceylon, India, Burma, Indo-China, China and Hainan Island he gives P. phryne, P. amasene, P. coronis, P. svagete, P. zeuxippe, P. cassida, P. hira, P. copia, A. dapha, and H. pallida, as synonyms, thas uniting ander one the three species kept distinct by Dr. Butler. The conclasions de Nicéville arrives at are these:-H. nerissa, the parent form (as being the first described) of this group of the genus, has the gronnd-colour of the underside of the hindwing white, and is found in Nepal, Sikkim, Bhatan, Assam, Burma, Indo-China, Sonth China, Hong-Kong and Hainan. Absolute synonyms are P. amasene and A. dapha. In Nepal (probably), Sikkim, Assam, and Aracan where it meets typical H. phryne, with the hindwing on the underside some shade of yellow or sandy buff, the two races intermingle, this connecting link being P. copia, and it is impossible, especially in the female sex, to say to which race certain specimens should be apportioned. Were it not so, the two races might be kept as distinct species, as east of the Eastern Himalyas to Hainan Island the race is constantly H. nerrissa (except at Shillong in Assam and at Chittagong in Aracan, North Burma, where very typical specimens of H. phryne are fouud), while J. i. 28
sonth of the Himalayas to Ceylon the race is constantly H. phryne. In Burma there is a very interesting sub-local-race (if it may be so termed) which in both sexes on the underside of the forewing along the costa and at the apex, and in the hindwing at the base, is streaked with yellow, while the ground-colour remains white. It has not been named. Absolute synomyms of \boldsymbol{H}. phryne are P. coromis, P. evagete, P. zeuxippe, P. cassida, P. hira and H. pallida. It is quite out of the question to allow two distinct species of this group of Huphina in Ceylon as Dr. Moore has done. H. nerissa is very common in the Island, though scarcer in some seasons than in others, and occurs at all elevations. It is highly seasonally dimorphic, and the larva feeds on Capparis.

170. Hophina remba, Modre.

An uncommon insect in Ceylon and of apeedy flight, consequently is difficalt to catch. It is found in the hill country between 2,000 and 4,000 feet, and is common at Pundaloya. It has been bred in South India, where outside of Ceylon it is alone found, and feeds on capers as usual. Dr. Butler records it from Mussoorie, which is certainly incorrect. Its coloration and markings vary greatly in accordance with the season, whether wet or dry.

171. Nepheroita crilatica, Felder.

Originally described from "Rambodde and Trincomali." Dr. Moore in Lep. Cey. gives three species of Nepheronia as occurring in the Island, N. ceylonica (sic), Felder, N. fraterna, Moore, and N. spiculifera, Moore. With the best will in the world we are unable to distingaish between these three species. It is obviously somewhat variable, bat whether this variability is due to seasonal changes or to the elevation of its bgeeding places we are ancertain. It is extremely common all over the island and occurs in the low country as well as in the hills. It has a near ally in the Sonth Indian N. pingasa, Moore. It has not been bred, bat the larva almost certainly will be found to feed on capers.

Subfamily Papilionine.

172. Troides darsids, Gray.

Moore as Ornithoptera darsius. Oommon in the low country nearly all the year round ; abundant aleo in the low hills, and occasionally seen - at the highest elevations. The female is somewhat varinble with regard to the amount of grey coloration on the veins of the forewing on the npperside ; the male is very constant. T. darsius is pecaliar to Ceylon. The larva feeds on Aristolochia.
173. Papilio hector, Linnæas.

Moore as Menelaides hector. Common in the low country at certain seasons of the year, generally after the first oatbreak of the two monsoons; abundant at Colombo. It is a common species in many parts of peninsular and continental India. The larva feeds on Aristolochia.
174. Paplio jophon, Gray.

Moore as Menelaides jophon. Pecnliar to Ceylon, and confined locally to the middle hill district. It is not rare at Punduloya and Gampola in Jone, and is easily captured in the early morning; after the sun is up it flies fast and soars over the tops of the forest trees quite out of reach. Wade records it from Ambegamua and the Kottawa forest; Mackwood from the hills from 2,000 to 4,000 feet, very local, taken only in the Navalputhí and Pusilawa country in a tract of about twenty miles in extent in June. P. jophon has a near ally in the South India P. pandiyana, Moore. The latter species has not been bred, but Moore figares the larva of \boldsymbol{P}. jophon, though he does not record its foodplant.

175. Papilio aristolochie, Fabricius.

Moore as Menelaides ceylonica, Moore. An abandant species in Ceylon, especially so in the low country. In its typieal form P. aristolochie occurs almost throughout India, in Burma, Siam, the Malay Peninsula, China, the Loo Choo Islands, Natuna Islands, Java and Celebes. The larva feeds on Aristolochia.

176. Papilio demoleus, Linnæus.

Moore as Orpheides erithonius, Cramer. A common low country insect in Ceylon, and takes a large share in the annual migratory fliglits. It is found also in Arabia, Persia, throughout India, Burma, in Chína, and in Formosa Island. The larva feeds on plants of the Natural Order Rutacees, which contains the oranges, limes, pomolos, etc., and the evil-smelling Garden Rue.

177. Papilio mooreanos, Rothschild.

Moore as Oharus helenus, Linnøns. This is a local race of P. helenus, confined to Ceylon, the South Indian local race being P. daksha, Hampson, typical P. helenus being found in North-Enst India, Barma, the Malay Peninsula, China and Southern Japan. Rothschild remarks in describing P. mooreanus that " It is very carions that Mr. F. Moore does not either describe or figure [in Lep. Cey.] the underside which exhibits the distingnishing characters," these being on the hindwing
"A complete series of seven subdiscal blue lunules, of which the three anterior stand at the outer edge of the white discal marks, and of which the two posterior are situated within the anal and subanal rufous spots." It is a very common insect at all elevations, but especially so in the low country. It is difficult to capture in good condition from its habit of flying in and out of the jungle which soon tatters it. Dr. Moore describes the transformations of this species, but does not give the food-plant of the larva, which, however, is almost certain to be plants of the Natural Order Rutacess.

178. Papilio parinda, Moore.

Moore as Iliades parinda. An abundant species in the low conntry and lower hill districts of Ceylon, to which island it is confined. The females are much rarer than the males. A very conspicuous insect on the wing and invariably figures in the boxes of insects sold to confiding passengers at exorbitant prices by rascally natives. In South India and northwards to Bengal it is replaced by the parent form, P. polymnestor, Cramer. The larva feeds on Rutacece, especially on plants of the genas Citrus.

179. Papilio polytes, Linnæus.

Moore as Laertias romulus, Cramer. Abundant everywhere in Ceylon, and found throughout India, Burma, the Malay Peninsula, IndoChina, the Andaman and Nicobar Islands and Sumatra. Dr. Moore describes its transformations but does not mention the pabulum of the larva, which is plants of the Natural Order Rutaces.

180. Papilio lankeswara, Moore.

Dr. F. Moore as Chilasa dissimilis, Linnæns, O. clytiotdes, Moore, and C. lankeswara. The Hon. Walter Rothschild in Nov. Zool., vol. ii, p. 368 (1895) gives P. lankeswara sab-specific rank, with clytioules and dissimilis as aberrations, all three restricted to Ceylon, the parent form being P. clytia, Linnæus, from Northern India. He notes that "The local races of P. clytia are all variable, but we have here a very curious example of incongruous variation : P. clytia, P. clytia lankestoara, and P. clytia panope are pronouncedly dimorphic. To each of these three geographical races belong a clytia and a dissimilis form; while, however, the clytia-form develops in the respective localities into a subspecies, its aberration dissimilis, though very variable in every locality, remains the same. The dissimilis from Ceylon, Assam, Tenasserim, etc., are indistinguishable; the clytia from there exhibits certain obvious differences. In Palawan and the Philippines the clylia-form alone occurs, the
dissimilis-form is absent. On the contrary, the Andamans are inhabited by a dissimilis-form, whereas specimens corresponding to clytia are absent; and further east, in the lesser Sunda Islands, we find a species with the pattern of dissimilis and no clytia-like form. From Borneo, Sumatra, and Java no representative species of P. clytia, Linnæus, has been recorded." In Ceylon P. lankeswara is a common species in the lower hills. It is in all its forms an admirable mimic of species of Danais and Euploea. In Ceylon the light form mimics D. limniace, Cramer, the dark form E. asela, Moore, and E. montana, Felder. Dr. Moore gives the food-plant of the larva as Tetranthera.

181. Papilio crino, Fabricias.

Moore as Harimala montanus, Felder, originally described from "Rambodde, Ceylon." In Ceylon it is common ard widely distributed; the females are rare. It is less common in the higher hills, where it is probably a passenger only; it is abundant at Kandy, and common in the Northern Province as far north as Anaradhapura, in June, July and December. Rothschild says that the aberration montanus without woolly stripes on the forewing on the upperside along the veins of the male occurs all over the area of P. crino, which is throughout Southern India, the Central Provinces, Orissa and Bengal. The larva feeds on the leaves of the satin-wood tea in Ceylon.

182. Papifio alcibiades, Fabricins.

Moore as Pathysa antiphates, Cramer. Rare and local in Ceylon, it seems to be more partial to the eastern aud drier parts of the island. The parent form P. antiphates is from Eastern China, while P. alcibiades is found in India, Burma, the Malay Peninsula, and in many of the Malayan Islands. Rothschild describes the aberration ceylonicus, Eimer, as having "Two basal black bands on the upperside of the forewing exteuding beyond the median nervure; the fourth band broad and reaching the median nervare (not triangular). In these two characters ab. ceylonicus agrees with typical P. antiphates, from which it is distinguished by the greyish-black cuudal area of the npperside of the hindwing being very much restricted." The larva feeds on Unona.

183. Papilio nomids, Esper.

Moore as Pathysa nomius. Common and frequently abundant in the North Central Province and on the Trincomali side of the Island. It is fond of settling in large numbers together on damp patches of saud. It flies in July and August, and again at the end of the year. It
is found also in many parts of India, with a local race, P. nomins swinhoef; Moore, from Burma, Indo-China and Hainan Island. The larva feeds on plants of the Natuial Order Anonacea.
184. Papilio jason, Esper.

Moore as Zetides telephus, Felder, and Z. doson, Felder. P. jason is confined to South India and Ceylon; in the latter island it is very abundant in July, August, and at the end of the year in the north and eastern portions in the low country. On November 16th, 1898, the first day of the annual flight, Manders noted that it was migrating in large numbers at Colombo; nearly all the numerous specimens he captured were in a more or less tattered condition though freshly emerged, showing that they had flown a considerable distance; they probably came from the dry district of Hambantota on the sontheastern side of the island. In Northern India P. jason is replaced by P. axion, Felder, which is found also in Burma, the Malay Peninsula, South-Eastern China, the Andaman Isles, and in the Malay Archipelago. The larra feeds on plants of the Natural Order Anonacess.
185. Papilio trrbdon, Felder.

Moore as Dalchina teredon. Abundant in the hills, and in the north and eastern portions of the Island in the low country ; but is not found in the damp south-eastern district. It is replaced in Northern India and Burma by the parent form, P. sarpedon, Linnæus, which is found also in the Malay Peninsula, many of the Malayan Islands, the Loo Choo Islands and in South Japan. The larva feeds on Cinnamomeum and many other plants.

186. Papilio agamemnon, Linnæus.

Moore as Zetides agamemnon. Usually common and frequently very abnndant, especially in the low country and lower hill district of Ceylon, and given to migrating. It has a wide range, being found almost throughout India, in Burma, the Malay Peninsula, Indo-China, and many islands of the Malay Archipelago. The larva feeds on Magnoliaces and Anonacer.

Family HESPERIID为.

187. Hantana infernus, Felder.

Apparently confined to Ceylon, where it is not ancommon in the middle hill district in jungle. Its transformations are anknown.
188. Celenorriinus spilotitrus, Felder.

Moore as Plesioneura spilothyrus. A low hill district insect, common in the neighbourhood of Kandy. Messrs. Elwes and Edwards record it from South India and Java as well as from Ceylon. The larva feeds on Acanthus.

189. Sarangesa albicilia, Moore.

Occurs at Trincomali in March and June, at Kandy and at Lagalla, and is widely distributed in the lower hill districts of Ceylon. Mr. Mackwood gives May and June as its months of emergence. It is confined to Ceylon and has not been bred. The late Herr Carl Plötz has described Autigonus sezendis from Ceylon in Berl. Ent. Zeitsch., vol. xxix, p. 230, n. 27 (1885) ; idem, id., Stet. Ent. Zeit., vol. xlvii, p. 112, n. 496 (1886). From a coloured drawing kindly made for de Nicéville by Herr G. Weymer from the type specimen in Herr Carl Ribbe's collection, it is quite evident that this species is the same as S. albicilia. A. sezendis is omitted by Messrs. Elwes and Edwards from their monograph of the oriental Hesperiidss.

190. Coladenia indrani, Moore.

Moore as O. tissa, Moore. Messrs. Elwes and Edwards restrict C. tissa to Ceylon, whence it was originally described, noting that "Though otherwise closely resembling the preceding [O. indrani], and probably just as variable in colour, may be known in both sexes by the distinct displacement inwards of the middle one of the three pale spots which form the subapical series [of the forewing]. The difference of the male genitalia of the two species are merely those of degree." In a large series of this species in de Nicéville's collection from many parts of India and Burma it is obvious that this character is as inconstant as the other markings, and is quite insufficient to discriminate the two species. O. indrans is seasonally dimorphic, true 0 . indrami being the wet, C. tiena the dry-season form. In Ceylon it is not uncommon in the lower hill district about Kandy; Mackwood recording it alao from Bedulla and Kaduganawa. The larva feeds on Xylia dolabriformis, Benth., Grewia microcos, Linn., and many other planta of different orders, in South India. Herr Carl Plötz has in Berl. Ent. Zeitsch., vol. xxix, p. 225, n. 1 (1885), described this species from Ceylon as Proteides Lanks, redescribing it in Stet. Ent. Zeit., vol. xlvii, p. 85, n. 8 (1886). From a coloured drawing of the type in Herr Carl Bibbe's collection made for de Nicéville by Herr G. Weymer, it is evident that this species is the same as C. indrani. P. lunks is not mentioned by Messrs. Elwes and Edwards.
191. Tagiades obscurds, Mabille.

Moore as T. distans, Miore. Originally described by Mabille from "Malay Archipelago, Java P " and ly Moore from Ceylon. Mabille's description applies very well to our Ceglon specimens. Moore notes "The Javan T. obscurus, Mabille, is nearly allied, bat diffors in the alisence of the discal semi-transparent spots on the forewing." Elwes and Edwards note "Though we have not beeu able to compare Malayan with Ceylon specimens, yet the absence of the discal spots relied on by Moore for distinguishing his species is a character of no valne, the two spots being sometimes absent in Ceylon specimens." In this we concar. In Ceylon 1'. obscurus is common in the low country generally. The larva in Sonth India feeds on Dioscorea pentaphylla.

192. Tagiades attices, Fabricias.

Not rare in the lower hills, generally in the neighbourhood of water. It has a wide range in India, Burma, the Malay Peninsula and Malay Archipelago. Dr. Christopher Anrivillius in Ent. Tids., vol. xviii, p. 150, n. 71 (1897) points ont that there is some doabt abont the correct identification of this species. The larva feeds on Surilax and Dioscorea.
193. Tapena thwaitesi, Moore.

Originally described from Galle in Ceylon, not met with by Manders, so it must be very rare. Elwes and Edwards record it from Burma, the Malay Peninsula, Sumatra and Borneo, and describe an allied species from the Nilgiris and North Kanara in South India as T. hampsmi, the larva of which feeds on Doris and Dalbergia. T. thwouitesi has not been bred.
194. Caprona bansonnetil, Felder.

Moore as Abaratha ransonneti. Elwes and Edwards as C. ransonnetiii. Not ancommon in the low country and about Colombo. It occurs also in Soath India, the Maldah district of Bengal, Orissa, the Central Provinces, Dehrn Din and Assam. In Sonth India the larra feeds on Helicteres isora, Linnæas.

195. Gomalia alborasciata, Moore.

Rare in Ceylon, recorded by Wade in dense jungle between Kirrinde and Werewille beyond Hambantota. Hampson records it from the foot of the Nilgiri Hills, Moore from the Kangra District, Swinhoe from Karachi, and Elwes and Edwards from Quetta. It has nevor been bred.
196. Hebperia aalba, Fabricius.

Not ancommon in Ceylon in the region of heary rainfall away from the coast. It is probably often overlooked from its small size, obscure coloration and quick flight, on the wing it looks more like a fly than a butterfly. It is found nearly all over India and Burma, and occurs at Aden. The larva in Calculta feeds on Sida rhombifulia, Liunæos, and in South India on Waltheria indica.

197. Baracus vittatus, Felder.

Confined to Ceylon, where it is very common in the upper and middle hill districts in grassy open ground, and on the Horton Plains in March. It has never been bred.

198. Suastus arbmids, Fabricias.

Moore as S. gremins and S. subyrisea, Moore. The Besperia disu of Kollar (Hügel's Kaschmir, vol. iv, p. 456, n. 6 (1844) described from the "Himalaya" is almost certainly a synonym of this species, but is omitted by Elwes and Edwards. A common low country insect in Ceylon It is found almost all over India and Barma, also in H.ng. Kong, Formosa and Hainan. Standinger records it from Sumatra. The larva feeds on palms.
199. Suastus minuta, Moore.

Moore as Tagiades minuta. It is common at Kandy, and is found ouly in Ceylon. The Pterygospidea everyx, Mabille, Bull. Soc. Ent. Belg., vol. xxvii, p. lxxvii (1883), and Tagiades everyx, Mabille, Ann. Soc. Ent. France, vol. lxvi, p. 219, pl. ix, figs. 8a, 8b, male (1887), recorded by the describer from Ceylon and Malacca (sic) is a synonym of S. minutus. The Apaustus sinhalus of Plotzz, Berl. Ent. Zeitsch., vol. xxix, p. 228, n. 19 (1885) ; idem, id., Stet. Ent. Zeit., vol. xlvii, p. 105, n. $1 a$ (1886) described from Ceylon, is another synonym. Herr G. Weymer has sent de Nicéville a drawing of the type specimen of the latter in the collection of Herr Carl Ribbe. Neither of these species are given by Elwes and Edwards. It has never been bred.
200. Iambrix salsala, Moore.

Moore as Astictopterus stellifer, Butler. May not the Hesperia naso of Fabricius; though described from the Cape of Good Hope, be an older name for this species? Common at Colombo and in the low country generally in open ground. It is found nearly all over India, Barma, the Malay Peninsula, Java, Borneo and Hong-Kong. The larva feeds on bamboo and grasses.
J. i1. 29

201. Tabactbocrba mevios, Fabricite.

Moore an Tarattooera mesvirs. A very common inseot in the low country of Ceylon, bat ensily overlooked from its small size and jerky flight amongst low herbage. It is very common on Crow Island at the month of the Kelani river in the spring and antumn. It occurs in many parts of India and Burma, and in Borneo and Celebes. It has never been bred.
202. Ampittia dioscorides, Fabricius.

Moore an A. maro, Fabricius, bat dioscorides is an older name by five years, vide Aurivillius, But. Tids., vol. xviii, p. 150, n. 65 (1897). Common in the low and middle hill country of Ceylon in open waste places. It has a wide distribation in India, Burma, the Malay Peninsula, Siam, Sumatra, Java, Buli, Sumba, Sambawa, Celebes, Ceram, Aru, Batjan, Halmaheira, Ké Isles, Hainan Islaud, and Northern China. The larva feeds on rice and grasees.
203. Hyarotis adrastos, Cramer.

Not a oommon inseot in the lower and middle hill districts, at Kandy and Panduloya, in April and July. It is common in many parts of India, Burma, Siam, the Andaman Isles, Sumatra, Java, Palawan, the Philippines and Hong-Kong. In Sumatra the larva feeds on the rattan cane, Calamus sp.

204. Matapa aria, Mooro.

Found at Colombo and Kandy in Ceylon in the low country only and is not common, flying in January and July more especially. It has a wide range, being found in many parts of India, Burma, the Andaman Isles, Sumatra, Nias, Java, Palawan, Bali, Lombok, Hong-Kong and Hainan. The larva feeds on bambod.
205. Gangara thisess, Fabricius.

Common in the plains and low country only of Oeylon, at Colombo and Kandy. It has a wide range in India, Burma and Malaya. The larva feeds on palins.
206. Padjía lrbadea, Hewitmon.

Moore as Matapa subfasoiata, Moore. Originally described by Hewitson from Borneo. Dr. Moore's figare of his M. subfasciata in Lep. Cey. is extromely bed, and the desoription defective, no mention being made of the remarkable secondary texual obaracters on the apperside of the wings in the male. It is a vory rare opecies overywhers,

Elwes and Edwards record it from Sikkim, Perak, Java and Pulo Laut, it occurs also in the Andamans, Singapore and Sumatra. Mr. E. E. Green obtained it in Ceylon, but we have no exact records as to where it may be looked for in the island. Dr. Moore briefly describes its transformations, and says that the larva feeds on Palmacees.

207. Notocripta peisthamelit, Boisdaval.

Moore rs Plesioneura alysos, Moore, and P. restricta, Moore. Messrs. Elwes and Edwards unite these two species, which, though typically distinct enough, are not constant. It has an immense range in Indin and Malaya, China, the Lon Choo Islands and Japan. In Ceylon it is not ancommon in the low and middle hill country, particularly so about Kandy and in the Central Province. The larva feeds on Zinziberacess, Maranta, and Hedychium.
208. Udaspes folus, Cramer.

A very common insoet in the low country of Ceylon. It ocenrs nearly all over India and Malaya, and in Iudo-China, Ohina, Formoss and Hainan. The larva feeds on Ourouma.
209. Telicota bambose, Moore.

An abundant low country insect in Coylon, occasionally foand in the middle hill distriot. It bas a very wide range in India and Malaya, found also in China, Anstralin, and the islands of the Paoiflc. The larva feeds on bamboos and grasses.
210. Padraona gola, Moore.

Moore as P. goloides, Moore. It is widely distribated in Ceylon, occurring from the sea coast up to 5,000 feet, found at Kandy and Colombo commonly from January to March. Its range is almost all over India, China and Malaya to Northern Anstralia and the Fiji Islauds. The larva feeds on soft grasses.

211. Padraona dara, Kollar.

Moore as P. psendomæsa, Moore, and P. mæsoides, Butler. Occurs commonly nearly all over Ceylon, from the plaius up to 5,000 feet. Common all over India, Malaya and the Pacific, and found in China and Japan. The larva feeds on bamboos. M. Panl Mabille appears to have redescribed this species from "Java, Ceylon, and perhaps the neighbouring Islands" as Panzphila taxilus in Ann. Soc. Ent. Belg., vol. xxi, p. 38, n. 147 (1878). As far as the desoription reveals it agrees with P. dara, and is placed by Messrs. Elwes and Edwards as a synonym of that species.

212. Halpe oetlonica, Moore.

We have no exact records of the occurrence of this species in Ceylon, though Messrs. Elwes and Edwards give it from thence and from the Nilgiris. H. moorei, Watson, recorded by those gentlemen from Calcutta, the Khasi Hills, Burma, Trichinopoli and the Andaman Isles, is very doulstfully distinct from H. ceylonica, Messrs. Elwes and Edwards saying that the discal band on the underside of the hindwing in H. moorei is white, in H. ceylonica is yellowish-white, that it appears on the upperside in an indistinct suffused pale patch in H. moorei, but is absent in H. ceylonica. These two characters appear to us to be insufficient to separate the two species, H. ceylouica being obviously a variable insect. Should they be proved to be one, Moore's name will stand for the butterfly. Moore records \boldsymbol{H}. ceylonica from Mergai, captured in January and March. It has not been bred.

213. Halpe egena, Felder.

Moore as \boldsymbol{H}. brunnea, Moore. Originally described from "Kallapahani, Ceylon, 15th December." There is no doubt in de Nicéville's mind that H. brunnea equals H. egena as Dr. Moore suggests. H. egena is not mentioned by Messrs. Elwes and Edwards. Herr Plötz records it from Ceylon, to which island it appears to be confined, bat we do not know exactly where it is found. In de Nicéville's collection is a single male from Panduloya, Moore described it from a single female example, Elwes and Edwards have seen a single pair, so it must be very rare. It has not been bred.

214. Halpe decorata, Moore.

A rare low country insect in Ceylon, to which Island it is restricter ; recorded by Moore from Galle and Morowaka, and by Elwes and Edwards from Awissawella, all on or near the coast. In de Nicéville's collection are specimens from Densworth, Awissawella, taken in July by Mr. Thomas B. Butt. It has never been bred.
215. Baoris oceia, Hewitson.

Moore as B. penicillata, Moore. In Ceylon it is a very common low country insect. It is found in many parts of India, Burma, the Andaman Isles, the Malay Peninsula, Sumatra, the Philippines and China. The larve feeds on bamboo.
216. Chapra mathias, Fabricius.

Moore as O. mathias and O. agna, Monre. Widely distribnted and abundant generally in Ceylon, especially so in the low country. Its Lubitat may be said to be Southern Asia from Syria on the west to

China and Japan on the east, and throughout Malaya to Australia. It is found also in Arabia. The larva feeds on rice and grasses.
217. Parnara phillppina, Herrich-Schäffer.

Moore as Baoris seriata, Moore. This species is common at low elevations in Ceylon and about Kandy. It may always be known according to Messrs. Elwes and Edwards' definition in both sexes by having no spots in the discuidal cell of the forewing, but always with a spot placed anterior to and touching the submedian nervare of that wing, in the next species the latter is wanting. Moore's figure of the female of Baoris kunara (Lep. Cey., vol. i, pl. lxix, fig. 2a) applies to P. philippina. Dr. A. Pagenstecher in Jahr. des Nass. Ver. für Natur., vol. xxxvii, p. 207, pl. vii, fiy. l, femule (1834) has described from Amboina and Ceylon a Pamphila lavika, which the late Herr Carl Plölz also records from both islands. This species is almost certainly the same as P. philippina. P. larika is not referred to by Messrs. Elwes and Edwards. Herr J. Röber records Pamphila larika, Pagenstecher, from Key, and redescribes it, proposing for it the name of Pamphila subfenestrata if distinct (vide Tijd. voor Ent., vol. xxxiv, p. 321 (1891). Mr. de Nicéville has received about 60 specimens of P. philippina from the Ké Archipelago, some of which agree with Herr Röber's description. It is a most variable species, and has been found in many parts of India, in Burma and Malaya as far east as the Ké Archipelago at any rate, and has also been recorded by Ribbe from the Pacific. It does not appear to have been bred.

218. Parnara kumara, Moore.

Moore records this species from Kandy. We have no specimens of it from Ceylon, nor do Messrs. Elwes and Edwards record it from thence, but give it from the Nilgiris, Sikkim, Java and Borneo. It is doubtfolly distiuct (at any rate superficially, the prehensores as figured by Elwes and Edwards are distinct enough) from the last-named we think: P. philippina in the older name of the two. The larva feeds, according to Aitken, on rice, on bamboo according to Bell.
219. Parnara conjoncta, Herrich-Schäffer.

Moore as P. narooa, Moore. We have no specimens from Ceylon, and Moore gives no exact locality for it. It occurs in many parts of India, Burma, the Malay Peninsula, the Andamans and Nicobars, Sumatra, Nias, Java, Borneo, Lombok, Sumba, Sambawa, the Philippines, and Hong-Kong. Moore describes the larva but does not give its foodplant; Bell says it feeds on long grasses. A synonym of this species
not given by Elwes and Edwards is the Hesperia alice, Plötz, Stet. Ent. Zeit., vol. xliv, p. 45, n. 320 (1883), described from Mergai in Lower Burma and the Philippines. Herr George Weymer has kindly sent de Nicéville a coloured drawing of the type in the Berlin Museum.
220. Parnara guttatus, Bremer and Grey.

Moore as P. bada, Moore, who records it from Colombo. It is a onmmon low country insect in Ceylon and has a wide range in India, China, Japan and Malaya. Hesperia koluntus, Plötz, Berl. Ent. Zeitsch., vol. xxix, p. 227, n. 13 (1885), and Stet. Ent. Zeit., vol. xlvii, p. 97, n. 316c (1886), described from India, is another synonym of this species not given by Elwes and Edwards. Herr G. Weymer has sent de Nicéville a coloured drawing of the type specimen in Herr Carl Ribbe's collection. The larva of P. guttatus feeds on rice and grasses.
221. Parnara colaca, Moore.

Moore as P cingala, More. We have no exact locality for this species from Ceylon, and Moore gives none. It is found in many parta of India, the Andamans and Nicobars, and several of the Malayan islands. The larva feeds on Graminaceæ-grasses and rice.
222. Ismene ataphus, Watson.

Moore as I. cedipodea, Swainson. Recorded by Moore from Kandy, Balangada, and near Trincomali, scarce. It is found also in the Himalayas, Assam and Burma. The larva feeds on Hiptage.

223. Hasora badra, Moore.

Recorded by Moore from the Kottawa forest, rare. We have specimens from Ceylon but without exact locality. It is found in many parts of India, Burma, the Andamans, the Malay Peninsula, Sumatra, Nins, Jara, Borneo, Bali, Lombok, Engano, Sumba, Sambawa, Celeber, the Philippines and China. It has not been bred.

224. Pabata alexis, Fabricing.

Moore as P. chromus, Oramer. Widely distribated in Ceylon, found from the plains up to 6,000 feet. It has a wide range in India, is found in Burma, the Andamans, Java, Borneo, Pulo Laut, and Hong-Kong. 'The larva feeds on Pongamia and Heynia.
225. Parata botleri, Aurivillige.

Hasora butleri, Aurivillins, Ent. Tide., vol. xviii, p. 150, n. 68 (1897).
Moore as P. alexis, Fabricius. This species differs from P. alexis, Fabricius, in having the discal white band on the underside of the
hindwing very broad and well defined. It is found in the low country and up to 6,000 feet elevation; we have specimens from Colombo taken in June, and Trincomali taken in September and November. The larva has been reared on a climber, Rourea or Derris, in South India, where alone in addition to Ceylon it is found. Messrs. Elwes and Edwards sink this species as a synonym of "Hasora" chromus, Cramer.
226. Bibasis sena, Moore.

Rare in Ceylon, recorded from Kandy. It is found also in South India, the Western Himalayas, Sikkim, Assam and Siam. The larva feeds on Combrelum and Hiptuge.
227. Badamia exclamationis, Fabricius.

A common low country insect; found also in the middle hill district of Ceylon. It has an immense range, occurring throughout India, in China, Malaya to Australia and in the South Sea Islands. The larva feeds on Terminalia, Ficus, Linociera, and Combretum.
228. Rhopalocampta benjaminit, Guérin.

Moore as Choaspes benjamini. Not uncommon in the middle hill district of Ceylon from May to November, but difficult to capture in good condition. It is found also in South India, the Himalayas, Assam, Barma, Indo-China, China, Japan and Borneo (Druce). Dr. Moore describes the larva, but does not mention its food-plant. In India it feeds on Sabia and Meliosma.

The late Herr Carl Plötz in Berl. Fnt. Zeitsch, vol. xxix, p. 226, n. 7 (1885), and in Stet. Ent Zeit., vol. xlvii, p. 92, n. 93c (1886), described a Hesperia taprobanus from Ceylon. Herr G. Weymer has sent de Nicéville a coloured drawing of the type specimen in Herr Carl Ribbe's collection, from which it appears to be the same species as Zea mythecoides from Celebes described by de Nicéville in Journ. Bomb. Nat. Hist. Soc., vol. xii, p. 157, n. 23, pl. AA, figs. 33, male; 34, female (1898). Herr Weymer notes that the species occurs at Tombugn in East Celebes. It is certainly not a Ceylonese species, and de Nicéville's name will stand for it, as Taprobana being the ancient name for Ceylon is misleading. Messrs. Elwes and Edwards do not mention this species in their monograph.

Again, Herr Plötz in Stet. Ent. Zeit., vol. xlvii, p. 106, n. $45 b$ (1886), described Apaustus luteipalpis from Ceylon. As far as his poor description goes it applies to the female of Iambrix salsali, Moore, (No. 200 ante) and is probably that species. A. luteipalpis is not given by Messrs. Elwes and Edwards.

> On a nevo Genus of Butterfies from Western China allied to Vanessa.By Lionel de Nictville, F.E.S., C.M.Z.S., \&c.

[Received 30th November ; Read 6th December, 1899.]
Genus Lislex, nov.
Differs from Vanessa, Fabricius, and Pyrameis, Hübner, the type of both being Papilio atalanta, Linnmas, in having the palpi very much shorter, hardly extending in front of the head, the antennes also considerably shorter, with a larger clab, the porewing with the second subcostal nervule given off a little beyond the apex of the discoidal cell instead of before its end, the hindwing with the anal angle rounded instead of produced; otherwise similar to Vanessa. Type, Vanessa limenitoides, Oberthür.

Lelex himenitofobs, Oberthür.

Vanessa limenitoides, Oberthür, Et. d' Kint., vol. xiii, p. 39, pl. ix, fig. 96 (1890); id., Leech, Butt. China, Japan, and Corea, vol. i, p. 254 (1892).

Habitat: Tsé-Kou (Oberthir), Ta-chien-ln (Leech), both Western China.

I am indebted to M. Charles Oberthür for the gift of a single male of this remarkable batterfly from Tsé-Kou, captured in 1895 by M. R. P. Dubernard. Mr. Leech wrote of it "As its charncters are not exactly those of a Vanessa it is probable that a new genus will have to be created for the reception of this insect." Not only does it differ widely in the form of the palpi, the length of the antenna with its larger clab, and in the neuration of the forewing, but also in its coloration, there being no Vanessa except V. antiopa, Linnæus, (genus Euvanessa, Scudder), which is black with creamy-white markings, the disposition of the markings being, however, wholly different in the two species.

LIBRARY OF THE GRAY HERBARIUM
HARVARD UNIVERSITY.
THE GIFT HF
Prof. G. R. \&iconmanr.

JOURNAL
OF TIE
ASIATIC SOCIETY OF BENGAL, Vol. LXVIII. Part II, No. 4.-1899.

EDITED BY
The Natural fistory Secretary.

4 The bounds of its investigation will be the geographical limits of Asia : and wi lain these limits its inquiries will be extended to whatever is performed by man or produced by nature."-Sif William Jones.

Communications should be sent under cover to the Secretaries, Asint. Soc., to whom all orders for the work are to be addressed in India; or care of Messes, Luzac \&f Co., 46, Great Russell Street, London, IV. C., or Mr. Otto Harrassoniti, Leipzig, Germany.

CALCUTTA:
printed at the Baptist Mission Press, AND PUBLISHED BY THE
Asiatic Society, 57, Fare Street.
1900.

CONTENTS.

Page
On a collection of birds from Manipur.-By Lieut. H. H. Terner, Communicated by the Natural History Secretary ...
Akakia: an Ancient Eastern Medicine.-By David Hooper, F.C.S. Notes on the Ploceide.-By F. Fiss, B.A., F.Z.S., Depuly Superintendent of the Iudian Museun

INDEX SLIP.
Zoology.-Turner, H. H. On n collection of birds from Manipur. Journ. Asiat. Soc. B:ngal, LXXVII, pt. ii, 1899, 1p. 23i-9+5. Birds, a coliection of,-ftom Manipur p. 235. Manipar, a collection of bircs fiom p. 235.

Physiolo!ny, Pharmurology.--Honper, D. Akakin. An ancient Eastern Medicine. Journ. Asiat. Suc. Bengal, I,XVIII, pt.ii, l~99, pp. 245-249. Acacia arabics, fruit of p. 246. Akakia, mode of preparation p. 246.

Do. modicinal virtues of p. 247.
Do. chemical analysis of p. 248 .
Do. counterfeits of P. 249.
Zoology.-Finn, F. Notes on the Ploceidw. Journ. Asiat. Soc. Bengal, LXVIII, pt. ii, 1899, pp. 2;0-257.
[Aves, Passeref, Ploceidæ.)
Ploceus rutledyii, the summer plumage of l. meynrh!
chils pp. 250-25.2.
Do. megurhynchus, the summer plamase of ... pl. 250-252. Plamage in summer, of P. megarhynchts ... pp. 2:0-2:5.
[Avis, Passeres, Ploceidæ.]
Mania malncca and M. alricapilla, interbreeding of ... pp. 252-2:3.
Interbreeding of Mnni, malaccu mid M. atricnpillı ... pp. 252-253.
Classificalion, more natural-of the Ploceidm ... pp. 253-255. Sporeyinth"s aman lara, sexual selection in ... pp. 255-2.7. Sexual se'ection in $S_{\text {poraginthus amandacu ... 1p. 255-257. }}$

JOURNAL

Notice.

Foreign Societies who favour the Asiatic Society of Bengal with their publications are informed that they may be sent either to the address of the Society at Calcutta, or to the Agents of the Society in London, Messrs. Luzac \& Co., 46, Great Rnssell Street.

Avis.
Des Sociétés Etrangères qui honorent la Société Asiatique de Bengale de ses publications, sopt priées de les envoyer on directement a l'adresse de la Société, 57, Park Street, Calcutto, ou aux Ageuts de la Société à Londrea, Mesars. Lusac et Cie, 46, Great Rusaell Street.

Areiag.

Ausländische Gesollechaften welche die Asiatische Gesellschaft von Bengalen mit ihren Pablicationen beehren, sind hierdurch ersucht dieselben entweder direct an die Adresse der Gesellachaft, 57, Pyrt Street, Calcutta, oder an deren Agenten in London, Messra. Luzac \& Cu., 46 , Great Russell Street.

[^10]
- -

!

JOURNAL

 OF THE
ASIATIC SOCIETY OF BENGAL.

neOers

Vol. LXVIII. Part II.-NATURAL SCIENCE.

No. I V-1899.

> On a collection of birds from Manipur.-By Lirot. H. H. Turner. Communicated by the Natural History Secretary.*

[Beceived September 27 th ; Read November 1 let, 1899.]
These birds were all obtained between the latitudes of 25° and $24^{\circ} 30^{\circ}$ and longitudes 95° and $93^{\circ} 30^{\prime}$. The approximate latitude and longitude of the following places mentioned are given to the nearest minute :-

Latitude. Longitude.

Homalin	...	$24^{\circ} 52^{\prime}$	94 ${ }^{\circ} 58^{\prime}$
Kungalthana	...	$24^{\circ} 43^{\prime}$	$94^{\circ} 36^{\prime}$
Tamunga	...	$24^{\circ} \mathbf{3 9}$	$94^{\circ} 39^{\circ}$
Thyoliching	...	$25^{\circ} 0^{\prime}$	$95^{\circ} 46^{\prime}$
Khambiching	...	$24^{\circ}{ }^{46}$	$94^{\circ} 24^{\prime \prime}$
Maphitel	...	$24^{\circ} 51^{\prime}$	$94^{\circ} 15^{\prime}$
Kanpru	...	$25^{\circ} 4^{\prime}$	$93^{\circ} 55^{\prime}$

- I am responsible for the identification of the speoies herein recorded, and for the notes in brackets. Lientenant Turner has with great generosity, presented several specimens (belonging to the species marked with asterisks) to the Indian Musenm, including the piok of the colleotion such raritien as Certhia manipurensis, Dendrocopus pyrrhothoraw, and Microperdix manipurensis. Nat. Hist. Beo., A.S.B. J. 1I. 30

Homalin is in Upper Chindwin, Upper Burmah, and is situated on the east bank of the river Chindwin; its height above sea level is about 450 feet. There is a lot of dense jangle in the neighboarhood.

Kungalthana is situated at the head of the Kabaw Valley and is just on the border between Burmah and Manipar at the S.-E. corner of the latter state. Hills covered with dense jangle rise to aboat 4,000 feet on the east and north. To the west the hills are less densely covered with jangle, but rise to 5,000 feet. To the sonth lies the Valley of Kabaw. All round Kangalthana there is dense jungle, though in places there are breaks with parklike stretches of grass. It is about 800 feet above sea-level.

Tamunga is a hill about 3,400 feet high and densely covered with jungle. It lies about 6 miles sonth of Kungalthana.

Thyoliching is a hill about 6,500 feet high, thickly covered with jangle, mostly bamboo. It is one of the highest points on the range of hills ranning more or less parallel to the Chind win River on its west bank.

Khambiching is a hill about 5,700 feet high, situated in the Naga hills abont 20 miles east of Manipur. This hill is not nearly so thickly wooded as most of the hills I visited and consequently a great deal more bird life was to be seen. All the Sunbirds were, I think, got in this neighboarhood. I never saw a minivet of any sort west of Khambiching.

Maphitel is a high hill about 6,700 feet high which overlooks the whole of the Manipur Valley, situated about 10 miles east of Manipur. It is very thickly wooded on all sides. Unfortanately my collector got ill here, and I was too busy to go out myself.

Kanpru is a high hill 8,400 feet high, to the North-West of Manipar ; I did not visit this hill myself, bat the Tragopans were got there.

The Logtak is a large lake aboat 10 miles soath of the town of Manipar. There are thousands of duck and geese to be seen on its waters. The principal species that I noticed was the grey duck or spotbill. A few pintail, gadwall, shoveller, white eyed pochard (a few only). I saw no mallard, and I believe they are never obtained in the Manipar Valley.

Dendrocitta rufa. The Indian Tree Pie.
One, Homalin, November, 1898. One, Kangalthana, December, 1898.

Dendrocitta himalayensis. The Himalayar Tree Pie.
One, Khambiching, December, 1898.

Pabus cinereds. The Indian Grey Tit.
One, Kangalthana, December, 1898.
Scarorhynchus rupicrps. The larger Red-headed Orón Tit.
One, Thyoliching, December, 1898.
Defonabtre rupicollis. The Rufous-bellied Laughing Thrush.
Two, Manipur Valley, March, 1899.
Garrulax leucolophus. The Himalayan White-crested Laughing Thrush.
One, Thyoliching, December, 1898.
Garrolax pbctoralis. The Black-gorgetted Laughing Thrueh.
Two, Tamunga, December, 1898.
Hume states that he never saw or heard this bird east of Manipur.
Garrolax moniliger. The Necklaced Laughing Thrush.
One, Tamanga, December, 1898.
This was shot ont of the same flock as the two Garrulax pectoralis, and bears out Hume's assertion that they go in mixed flocks.

Poxatoriinvs schisticeps. The Slaty-headed Scimitar Babbler.

One, Thyoliching, December, 1898.
Pyctorits sinensis. The Yellow-eyed Babbler.
One, Manipur, March, 1899.
Pbllornsou uandslifi. Mandelli's Spotted Babbler.
One, Khambiching, December, 1898.
Alcippr phaybil. The Burmese Babbler.
One, Tamunga, November, 1898.
*Lioptila gracilis. The Grey Sibia.
Two, Khambiching, December, 1898.
Sifa ofandroptrra. The Blue-winged Siva.
One, Khambiching, December, 1898.
Zobtriops simplex. Swinhoe's White-eyo.
Two, Khambiching, January, 1899.

Pirruteios erythropterus. The Red-acinged Shrike-tit.
One, Mahlong River, November, 1898. One Tamunga, Deoember, 1898.

Araithina tiphil. The Oommon Iora.
One, Manipur, March, 1899.
Chlororsis aurifrons. The Gold-fronted Ohloropois.
Two, Homalin, November, 1898.
Chloropsis hardwiciit. The Orange-bellied Ohloropsis.
Foar, Tamanga, December, 1898. One, Khambiching, December, 1898.

Chloropsis chlobocepeala. The Burmese Chleropsis.
One, hille between Kungalthana and Chindwin River, November, 1898. Two, Tamanga, November, 1898.

Melanochlora soltanea. The Sultan Bird.
Two, hills east of Kungalthana, November, 1898.
Minla ianeitincta. The Red-tailed Minla.
One, Khambiching, December, 1898.
Hypsipetes pearoides. The Himalayan Black Bulbul.
One, Khambiching, January, 1899.
Hume mentions having seen this species only once in the Naga bills.

- Hemixis platiel. The Brown-eared Bulbul.

Three, Nampesa (5,000 feet), just west of Kungalthana.
Hame mentions this species as being common west of Manipur, bat rare to the east.
-Hemixis maclellandi. The Rufous-bellied Bulbul.
Six, Khambiching, January, 1899.
*Alcords striatos. The Striated Green Bulbul.
Two, Khambiching, January, 1899.
Otocompsa plaviventris. The Black-crested Yellow Bulbuh
Three, Tamanga, November, 1898.
*Sitta nagabnsis. Aupton's Nut-Hatch.
Two, Khambiching, January, 1899.
Sitta frontalis. The Velvet-fronted blue Nut-Hatch.
One, Shombui, Naga hills, November, 1898. One specimen, Tamanga, December, 1898.

Chaptla alemba. The Broneed Drongo.
One, Khambiching, December, 1898.
Dissemords paradisids. The large Racket-tailed Drongo.
One, Tamanga, December, 1898.

* Oletinia manipureneis. Hume's Tree-Oreeper.

One, Khambiching, January, 1896.
[Lieutenant Turner's specimen of this species quite bears out Messrs. Hume and Oates' opinion of its distinctness, as the buff throat and breast and longer bill are conspicuous at once. I should mention, however, that O. discolor also coours in Mnnipur, as the Museum possesses a specimen procured there by Mr. R. D. Oldham.]

Megalurus palustris. The Striated Marsh-Warbler.
Two, Manipar Valley, March, 1899.
Phylloscopus proregulus. Pallas' Willow-Warbler.
One, Khambiching, December, 1898.
Peylloscopus superciliosus. The Orowned Willowo-Warbler.
One, Khambiching, December, 1898.
Lanius collurioides. The Burmese Shrike.
One, Mahlong River, November, 1898.
Lanids tephronotus. The Grey backed Shrike.
One, Manipar, March, 1899.
Pericrocotus fraterculds. The Burmess Scarlet Minivet.
Three, Kungalthana, November, 1898. Three, Tamnnga, November, 1898.

Pericrocotus brevirostris. The Short-billed Minivet.
One, Thyoliching, December, 1898.
*Pericrocotus solaris. The Yellow-throated Minivet.
One, Tamanga, November, 1898. One, near Khambiching, December, 1898.

Campopiaga mplanoschista. The Dark-grey Ouckoo-Shrike.
Two, Thyoliching, December, 1898.
Gradcalde macil. The Large Cuckoo-Shrike.
One, Tamunga, November, 1898. One, near Khambiching, November, 1898.

Oriolds melanocrphalds. The Indian Black-headed Oriole.
Two, Homalin, November, 1898. One, Kungalthana, November, 1898.

Orioles trallif. The Maroon Oriole.
One, Tamunga, November, 1898.
Aethiopsar grandis. The Siamese Myna.
One, Kangalthana, December, 1898.
Siphil atrophista. The Orange-gorgetted Flycatcher.
One, Khambiching, December, 1898.
Siphin albiolila. The Eastern Red-breasted Flycatcher.
One, Kungalthana, November, 1898.
Crornis cyanrus. The White-tailed blue Flycatcher.
One, Thyoliohing, December, 1898.
The Grey headed Flycatchor.
One, Khambiching, December, 1898.
Pratincola maura. The Indian Bush Chat.
One, Manipar Valley, March, 1899.
Oreioola frrbea. The Dark grey Bush Chat.
One, Tamunga, November, 1898. One, Manipar Valley, March, 1899.

Henicurds imeacolatus. The Black-backed Forktail.
One, Kungalthana, November, 1898.

Chimarriornis levcocrphalds. The White-capped Redstart.
One, Naklang River, December, 1898.
Rhyaoonnis foliginoses. The Plumbeous Redstart.
One, Kungalthana, November, 1898.
Ianthia rupilata. The Red flanked Bush Robin.
One, Khambiching, December, 1898.
Copgychus saularis. The Dhayal or Magpie Robin.
One, Manipar Valley, March, 1899.
Kittacinela macrida. The Shama.
One, Tamunga, December, 1898.
Pitrophila cyanus. The Western Blue Rock Thrush.
Two, Manipur Valley, March, 1899.
Mycerobas milanoxanthos. The Spotted-winged Grosbeak.
One, Khambiching, January, 1899.
Emberiza adrbola. The Yellow-breasted Bunting.
Foar, Manipur, March, 1899.
Anthos maculates. The Indian Tree Pipit.
One, Mablang River, November, 1898.
Aethopyan ignicadda. The Fire-tailed yellow-backed Sunbird.
One, Khambiching, December, 1898. Two, Khambiohing, Janaary, 1809.

Abthopyan gooldis. Mrs. Gould's yellow-backed Sunbird.
Four, Khambiching, January, 1899.
Aethopyea dabryi. Dabry's yellow-backed Sunbird.
One, Chattah, Naga Hills (near Thyoliching). Two, Khambiching, Jannary, 1899.

Abthoptga nepalensis. The Nepal yellow-backed Sunbird.
Two, Khambiching, December, 1898.
*arachmothera magna. The Large streaked Spider-Hunter.
Four, Tamanga, December, 1898.
Gscinos occipitilis. The Black-naped green Woodpooker.
One, Tamanga, November, 1898.
Gecings chlorolophots. The Small Himalayan yellowomaped Woodpecker.
One, Tamunga, 1898.
*Dendrocopus pyrreothorax. The Red-breasted piod Woodpecker.
One, Khambiching, December, 1898.
[Lientenant Tarner's specimen of this rare species agrees well with Colonel Godwin-Austen's obtained at Aimole, Manipur and still in the Museum.]

Dencrocopus atratus. The Stripe-breasted pied Woodpecker.
Two, Khambiching, January, 1899.
Ifngipicus canicapillds. The Burmese Pigmy Woodpocker.
One, Khambiching, January, 1899.
*Tiga shorit. The Himalayan Golden-bacted throe-toed Woodpecker.
One, Khambiching, December, 1898.
[This specimen has a rudimentary hallux, similar to, that of Brachypternus aurantius, but without a nail. As this rudiment is also present in a pair from Landour in the Asiatic Society's Collection of stuffed specimens,* and in a skin from Bhamo collected by Dr. J. Anderson-which are all I have been able to examine-it looks as if it were characteristic of the species, and hence I fail to see how this can be kept separate from Brachypternus.]

Chrysocolaptes autricristatds. Tickell's Golden-backed Woodpecker.
One, Kungalthana, November, 1898.
Megalama marshallorom. The Great Himalayan Barbet.
One, Kbambiching, Jannary, 1899.
Terreicerix lingatus. The Lineated Barbet.
One, Homalin, November, 1898.

[^11]Cynops abintica. The Blue-throated Barbet.
Three, Tamunga, December, 1898. One, Khambiching, January, 1899. T'wo, Manipur Valley, March, 1899.

Cyanops pranklini. The Golden-throated Barbet.
Two, Khambiching, in January, 1899.
Coracias appinis. The Burmese Roller.
Two, Manipur Valley, March, 1899.
Ceryle varia. The Indian pied Kingfisher.
One, Manipar Valley, March, 1899.
Halcyon suyrnensis. The White-breasted Kingfisher.
Five, Manipur Valley, March, 1899.
Anteracoceros albirostris. The Indo-Burmese pied Hornbill.
Two, Homalin, November, 1898.
Harpactes brythrocepealus. The Red-headed Trogon.
Two, Thyoliching, December, 1898.
Sornidolus luqubris. The Drongo Cuckoo.
One, Homalin, November, 1898.
Centropus binensis. The Orow pheasant or Coucal.
One, Manipar Valley, March, 1899.
Paleornis rosa. The Eastern Blossom-headed Parrakeet.
One, Homaliu, November, 1898.
Paleornis pasciatus. The Red-breasted Paroquet.
One, Maphild, January, 1899.
I also obtained two live specimens, male and female; the Iatter I have still, the former escaped.

Accipiter nisus. The Spairow Hawk.
Oue, Manipur Valley, March, 1899.
accipitrr virgates. The Besta Sparrow Hawk.
One, Manipur Valley, March, 1899.
J. I. 31

Tinnuncolus alaudarius. The Kestrel.
Four, Manipar Valley, March, 1899.
*Microhibrax eutolmus. The Red-legged Falconet.
One, Homalin, November, 1898. Three, Kungalthana, November, 1898.

Tragopan blythi. The Grey-bellied horned Pheasant.
Three, Kanpru, March, 1899.
Excaifactoria chinemsis. The Blue-breasted Quail.
Oue, Kaupum (Manipur Silchar Road), March, 1899. One, Manipar, March, 1899.

Coturnix japonica. The Japanese Quail.
One, Manipur Valley, February, 1899.
I saw a dozen or so of these birids; they were driven out of the long grass as it was burning. I thought at the time they were common quail, or would have takeu more trouble to obtain another specimen.
*Microprrdix manipurensis. Hume's Bush Quail or Manipur Quail. Five, Manipur Valley, February, 1899.
Two ont of the five of these birds were obtained almost in the dark, whilst running on the ground, they could be heard calling nt one's feet almost, but the grass on the spot where they were having only that afternoon been burnt they were very hard to distingaish. The other three were obtained on a different day and were driven out of the long grass by fire. [See the note on this species by Captain H. S. Wood, I.M.S., J.A.S.B., Pt. II, 1899, p. 110].

Arboricola rufigularis. Blyth's Hill Partridge.
One, Sirohiparas, January, 1899.
Turnix pognax. The Bustard Quail.
One, Manipar Valley, March, 1899.
Amadrornis pegnicurds. The White-breasted Wuter-hen.
One, Logtak, March, 1899.
Galucrex oinereds. The Kora or Water-Cock.
One, Logtak, March, 1899.

Sarcogrammos athonochalis. The Burmese Wattled Lapwing.
One, Manipar Valley, March, 1899.
Hoplopterus ventralis. The Indian Spurwinged Plover.
One, Kungalthana, November, 1898.
Ardrola grayi. The Pond Heron or Paddy Bird.
One, Manipar Valley, March, 1899.
*Nyroca ferruginea. The Western White-eyed Pochatd.
One, Logtak. One, Manipur. [This shows that the Western Whiteeje does occur in Manipur, as stated by Hame, and doubted by Mr. E. W. Oates. (Game Birds of India, Vol. II, p. 331). I may mention that the Eastern species (N. baeri) is again scarce this cold season at Calcutta].

Podicipes cristatus. The Great orested Grebe.
Two, Logtak, March, 1899.
These birds are by no means uncommon on the Logtak between November and February; the above specimens were rather late sojourners.

Podicipre albipennis. The Ivdian Dabchick.
One, Logtak, March, 1899.
These were very numerous on the Logtak.

Akakia : an Ancient Fastern Medicine.-By David Hoopre, F.C.S.

A substance called Akakia or Aqāqiy \bar{a} is described in both old and modern works on Indian Materia Medica, and is occasionally found in the bazars of this conntry.

Dioscorides and Hippocrates are said to have described it as the juice of a prickly tree and lauded its properties. Dr. Dymock avers that this plant is mentioned by Theophrastus (iii. 4 ; iv 3; vi. 1) under the name of axavoos, and that Virgil (Georg. ii. 119) spenks of the same acanthus in the line "baccas semper frondentis acanthi," no doubt in allusion to the globular inflorescence of the tree.

The betanical origin of the drag from the earliest records appears to be a bush or tree jielding an exudation similar to gum arabic. According to Arabian and Persian writers, the tree from which it is prepared is called "Karas." This is the fruit of Acacia nilotica of Delite
(Fl. Agypt., i. 963), the Acacia vera of Vesling (Agypt., p. 9, Icon), and is known as "Sant" among the Egyptians. These are all vernacular names and synonyms of one or more species, including Acacia arabica, the common babül tree of this country.

This is not the first time a paper bas been read before this Society on the subject of this remarkable medicine. In 1837 a communication was made by Mr. Lewis DaCosta, which consisted of a translation of the article on "Aqaqia" in the Makhzan-al-Adwiyah of Mahomed Khosru Khan. (See Journal Asiatic Society of Bengal, Vol. VI. part I, January to June, 1837, p. 392). No reference was made in the paper to the uses of the drug at that time, nor were any opinions offered as to the condition of the article as it was then sold or the estimation in which it was held by the people. Regarding the preparation of the extract, Pliny (24, 67) says that " the juice is left to thicken in the pods, which are steeped in rain water for the purpose, and then poured into a mortar, after which the juice is extracted by means of presses. It is then dried in the sun, and when dry, divided into tablets."

The method of preparing the extract, according to the Makhzan, is as follows:-The fresh, unripe fruits should be employed. These are bruised in a mortar, boiled in water over a gentle fire until the mixture assumes a thick consistence, then it is poured into moulds and set aside to dry, after which it is ready for use. Some anthorities are careful in pointing out that the desiccation of the extract should be effected under the influence of the san's rays, as a much superior preparation is supposed to be produced under these circumstances. The expressed juice, after a certain degree of concentration, is sometimes poured into bladders in which it is allowed to harden.

The little bladders full of Akakia found in Europe contain about five or six ounces each. That it was not unknown on the Continentin the early part of last century is evidenced by the fact that "Doctor Akakia" is the pseudonym under which Voltaire overwhelmed with redicule Maupertais a companion of Frederick the Great.

The drug reaches India vid Bombay, and is imported into this city from the Red Sea ports and the Persian Gulf. It is sold in the bazars of Bengal and Bombay either in very thin black cakes about the size of a rupee, or in larger cakes two inches in diameter and half an inch in thickness. The wholesale price is two sers for a rupee, and the commodity retails for about $1 \frac{1}{2}$ anna per chittak.

Various observers have noticed a difference in the character of the drug as sold in this country. It is usually a solid, heavy, brittle, dark coloured substance without any odour; the taste is insipid or sweetish at first, then astringent; it breaks with a shining fracture, and may be
reduced to a brown powder; it is partly soluble in water forming n red coloured macilaginous liquid, leaving behind a quantity of brownishgreen matter. Small fragments held up between the eye and the light have a reddish tinge similar to the glass of hock bottles. Other samples are coal black and quite insoluble in water.

Mohideen Sheriff; Khan Bahadur, a distingaished Mnhammadan practitioner in Madras, discusses very fully in his "Materia Medica of Madras," the appearance, preparation and therapentic nses of this extract. He describes two varieties met with in that oity-a hard and a soft variety. The hard kind is black and brittle, like the substance described above ; the soft kind is reddish or deep brown in coloar, and even after being kept for a long time, it is sufficiently tough and plastic to be made into boluses. He considers all the hard varieties to be impare or not at all made from the pods of an Acacia. An extract made by himself from fresh pods had a soft consistence, an astringent taste, and a slight, peculiar odour.

I would not attempt to enumerate in this paper all the medicinal virtues ascribed to this drug. It has been used in the East, especially among the Muhammadan community, as a panacea. It is supposed to be cold and dry, astringent, styptic and tonic, and is used internally and externally in relaxed conditions of the mucous membranes. It is recommended for nervous debility, dysentery, diarrhoea of children, and as a collyrium in purulent conjanctivitis. Applied as a lotion to the face it is said to improve the complexion, and to grey hair to give a black colour. Made into an ointment with beeswax, or mixed with white of egg, it has been used for burns, scalds, inflammation and erysipelas ; and in a powdered state it arrests hæmorrhage.

Further details of the effects said to resalt from the administration of this medicine will be found in Mr. DaCosta's translation of the chapter from the Makhzan, or in Dr. Mohideen Sheriff's work.

It will be well to tarn our attention to the source of this wonderful medicament and endeavoar to trace the origin of the useful therapeatic properties attribated to it.

Babül pods are used in India chiefly in two connections. Firstly, they are astringent, and are employed for tanning leather and making ink; and secondly, they are employed by native agricalturists for feeding and fattening cattle. No poisonous action has been recorded concerning the pods, and no active alkaloid has been detected in them. The tannic acid peculiar to the babūl is one of the pyrogallol series, which affords a blue-black colour with persalts of iron.

Babül or bablah pods have been analysed on varions occasions by chemists, with the object, in most cases, to determine the amount of
tannic acid present. V. Wilbuszewitcz, in 1886, estimating the acid by means of potassium permanganate, found 12.12 per cent., and by treatment with sulphuric acid, phlobaphene, ellagic and gallic acids were obtained as decomposition products.

Kay and Baston, by employing Procter's modification of Löwenthal's process for the estimation of tannin, found $22 \cdot 45$ per cent. in the pods. (Allen, Commercial Organic Analysis).

Marfat states that Bablah pods contain from 25 to 30 per cent. of tannin, analogous to that of nut-galls, besides a free acid and a large quautity of calcium salts.

During a chemical examination made in 1898, of a sample of babül pods collected in Bengal, I obtained $20 \cdot 65$ per cent., as the average of two concordant estimatious. The complete analysis was as follows:-

Water	6.87
Tannic acid	$20 \cdot 65$
Non-tanning soluble matters			...	$15 \cdot 15$
Fibre	$51 \cdot 40$
Ash	5.93
				$100 \cdot 00$

A solid extract was afterwards made by exhausting the crushed pods with warm water at $60^{\circ} \mathrm{C}$., and evaporating the reddish-brown liquid in a porcelain basin until it was dry. This extract, which should represent the Persian and Arabian drug, Akakia, was a dark brown, solid mass, almost entirely soluble in water, and possessing a strongly astringent taste. Its chief constituents were found to be-

This, it will be noticed, is a highly astringent preparation, and resembles in its composition one of the forms of cutoh manufactared for tanners from the wood of Acacia Oatecku.

It was thought probable that the fruit of the babül tree might contain an allied principle to that contained in the Acacia concinna, or soapbean of Soath India, but no appreciable amount of a saponin-like body conld be detected in the Bengal pods.

With a knowledge of what an extract of babūl pods should be, the light of chemical inquiry was next directed towards the composition of trade samples of Akakia. Three specimens are exhibited in the Indian Museum, two of which are in the form of round black cakes, and one in a hard yellowish, resin-like mass.

One of the black cakes, obtained from the Panjab, merely softened in hot water, without dissolving. On igniting a small quantity on platinum foil, it burnt with n dense smoky flame, and left a residue of 58 per cent. of mineral matter. It had all the characters of pitch or asphalt. Another sample of the same shape nnd colour, but obtained from Bengal, was similar in appearance to that from the Panjab. It consisted of a pitch-like, resinous material, and yielded when ignited about 45 per cent. of siliceous ash. The third specimen labelled "from Hyderabad," was a vitreous substance of a yellowish-brown colour. It was composed of gum, resin, vegetable debris and sand. It afforded no reactions for tannin, and, like the previons samples, was altogether foreign to the products of species of Acacia.

Since these samples were examined Ω further attempt has been made to procure in Calcutta a genuine specimen of this extract, but from the diversely coloured and resinous articles supplied nnder this name it is evident that entirely different substance are regularly being sold by the bazar draggists in place of the once renowned Akakia.

The local specimens, of which there are three in number, are coloured respectively black, green and light brown. The black cake bears a resemblance to those previously described, but closer examination showed that the resinous principle consisted of shellac, while the other constituents were charcoal, and a liberal allowance of sandy mineral matter amoanting to two-thirds of the weight of the whole.

The light brown specimen is a pure resin, and is no doubt allied to Olibanum, many varieties of which are obtained from species of Boswellia. The green lump is probably the same compound mixed with colouring matter. Olibanum seems also to be the basis of the resinous ingredient present in the Bengal variety.

The result of this inquiry shows a state of affairs which deserves explanation. Fither the native apothecary is entirely ignorant of the nature of some of the drugs he dispenses, or he is recklessly or frandulently practicing a system of substitution. The condition of the trade in the time-honoured drug Akakia is far from satisfactory, and it is only by practical investigations in this direction that we can hope to remedy it.

Notes on the Ploceidx.-By F. Finn, B.A, F.Z.S., Deputy Superintendent of the Indian Museam.
[Received November 29th ; Read December 6th, 1899.]

1. Plocsus rutledgii, Finn, the snmmer plumage of Ploceus megarhynchus, Hame.
2. On the interbreeding of certain species of Mania.
3. An attempt at a natural subdivision of the Ploceine Finches.
4. Some experiments on Sexaal Selection in the Avadavat.
5. Ploceus rutledgif, the summer plumage of P. megariynchue.

In the Proceedings of the Asiatic Society for July 1899, p. 77, will be found the diagnosis of an Indian species of Weaver-bird which I there named, believing it to be new, Ploceus rutledgic, after Mr. W. Rutledge, from whom the types were obtained. Mr. Rutledge would not sell the birds until assured that they would not be killed, and I am glad to say that his humanity las been justified by a very interesting occurrence. The birds, being kept alive, have in due course assumed an undress plumage very similar to that of the ordinary Bayas (P. baya and P. atrigula) but differing from this in most of the points which Mr. Hume pointed out as distinctive of his P. megarhynchus. As they also agree closely with this form in measurements, and were obtained from Nynee Tal (the types of P. megarhynchus having come from Kaladoongi, below that place) it seems to me obvious that my P. rutledgii is merely the summer plamage of that species, hitherto unknown, no doubt, by reason of the unhealthiness of its Terai habitat in the season when the birds are in full feather. Under the circumstances the promised plate seems to me unnecessary, and therefore I merely append below a description of this summer or breeding-plamage.

General colour bright yellow (brightest on head and dull and impure on rump), with the following exceptions;-lores, round the eye below, and ear-coverts, dark brown; a dull-black patch on each side of the breast before the shoulder ; nape and hind neck, dull blackish brown; upper back, wings, and tail blackish brown, each feather edged, entirely or externally, with light brown, on the uppermost part of the back with yellow; ander wing-coverts dirty white.

Iris bright light brown; bill black, fleshy-white at base; feet dark brownish flesky, claws blackish horny.

Both specimens, as noted in P.A.S.B. (loc. cit.) were similar, but one was slightly duller than the other. It is also slenderer in make, though quite as long, and has never sung or attempted to weave, even when separated from its fellow, which continually nttered, when "in
colour," its harsh unpleasant song, and was an indefatigable weaver when it got grass to work with; it used to stuff bits of earth in the work. It still occasionally sings and weaves, and sometimes flies wildly about, as it often did when in colour. The other bird has always been much milder in demeanour, though more restless, and less tame. It was nearly a month later in completing its change of plumage; but latterly I have seen it also behave more like a normal male.

The brightest bird, the singer and weaver, measures; length about $6 \frac{1}{2}{ }^{\prime \prime}$; bill from gape about ${ }^{\prime \prime} 8^{\prime \prime}$; wing about $3^{\prime \prime}$; tail about $2 \cdot 1^{\prime \prime}$; shank about $95 .{ }^{\prime \prime}$ The tail is much more graduated in winter than in summer plamage, and the bill is in the former fleshy, horny on culmen and tip, instead of black as in the full-plumaged bird.

It may be noted as a remarkable fact that, though the primaries of these birds had been plucked before they came into Mr. Rutledge's possession, and grew again soon after the specimens were acquired by the Mnseum, yet these new quills were again moulted and replaced in the ordinary way with the other feathers.

A very characteristic point of Ploceus megarhynchus is the long tail and short wing; as is shown by the measurements of this specimen and of Mr. Hume's, the difference between the length of the wing and tail is only about the length of the shank; in this point, as well as in the large amount of yellow in the plumage, P. megarhyachus approaches Plocëella javanensis. It also possesses, like that species, nuchal hairs, but so do all the Indian species of Plocers, though the absence of these insignificant filo-plumes is given, both by Mr. Oates in the Fauna of British India (Birds, vol. II, p. 174) and Dr. Sharpe in the British Museum Catalogue of Birds (vol. XIII, p. 406) as a character of the genus Ploceus as restricted by them.

It is not surprising that these authorities both united P. megarhynchus with P. atrigula, for no doubt there is a certain amount of intergradation between them, similar to that which occurs between P. atrigula and P. baya, as noticed by Mr. Hume (Stray Feathers, vol. VI, 1878, p. 400).

There are in the Indian Maseam several specimens of \boldsymbol{P}. atrigula showing an admixture of yellow with the buff of the breast, some of them procured by myself in Calcutta alive and kept so for a time to see if they would develop more of the yellow colouring-which they did not. Had I remembered this when I looked up P. megarhynchus and found that the types were in winter plamage and had been united with P. atrigula by the distingaished anthors of the volumes of the "Fauna" and the "Catalogue" above quoted, I might have escaped following their very pardouable mistake which suppressed this magnificent species, by far the finest of the Asiatic Weavers.

J, 11. 32.

Excluding, then, the two very easily distinguishable species P. bengalensis and P.manyar, typical males in summer plamage, of the remaining species, may be distingaished as follows :-

Size largest; entire under-surface yellow, ... P. megarhynchus.
smaller; throat blackish; breast buff, ... P. atrigula.
smallest ; throat dull black ; breast yellow, abdomen white ...
... P. baya.
For the distinction of males in undress and females size will be the best guide, though this may not be very reliable in view of the probable occurrence of many intermediate specimens.
2. On the Interbrerding of certain bpecies of Munia.

In January, 1897, I procured alive, in Tiretta Bazaar, Calcutta, a specimen of a Munia agreeing with Munia malacca in its general characters, but having the white portions of the plamage suffused with chestnut, and during the present year I have detected in cages of M. malacca many specimens showing more or less of this rufous colouration below, and have secured some for the Museum.

It is this occasional variation of the white lower parts, no doubt, which is alluded to by Mr. E. Bartlett (Monograph of the Weaver-birds, \&c.), under this species, in lis description of the female, which, he says, has "the white chest and sides strongly tinged with creamy-buff." But among the rufous-washed specimens procured by me most turned out to be males, while even the small series at present possessed by this Museum of the pure M. malacca shows that the underparts of the female are white like those of the male, as stated by Dr. R. B. Sharpe (Brit. Mus. Cat. Birds, vol. XIII, p. 331) and implied by Dr. A. G. Batler (Finches and Weavers in Captivity, p. 244).

This colouration is evidently not a stain (like the rusty tinge on the under-plumage of waterfowl, which I have seen assumed in a single night by a male Pintail (Dafila acuta) kept unpinioned on the Museam tank, which he used to leave and return to). I conclude this to be the case from finding the other birds in the cages with the tinted ones to be clean and pure white, and from the fact that immature birds still showing the light-brown plumage moult out either rusty or pare white below, according to the colours shown at first. I have tested this in three specimens kept by Major Alcock in his aviary, two of which have proved to be hens, and one a cock.

This departure from the typical colouration of M. malacca is no doubt caused by casual interbreeding with the nearly allied M. atricapilla, and a similar explanation would no doubt apply to the yellowmarked specimens of Plocers atrigula alluded to above. It would, however, be satisfactory to have the fact placed beyond doubt by pairing
the two species in captivity, which might easily be done. At the same time, in confirmation of the interbreeding theory, it may be mentioned that Dr. Butler in the work above quoted (p. 220) cites Dr. Karl Russ to the effect that the African Aidemosyns cantans and its very near ally the Indian A. malabarica, which do not meet in a wild state, interbreed indiscriminately in captivity. In view of cases like these, and of the fact that extreme forms of intergrading species, such as Corvus corone and O. cornia, and Coracias indica and O. affinis are positively known to pair up together, I cannot accept the theory that such intermediate specimens as occur midway in the range of intergrading forms represent the parent species in its as yet undifferentiated form, as has been advanced by some naturalists. For the progenitor of two given species need not have necessarily been an absolutely intermediate type, though the hybrid may be so, as has been proved by experimental breeding. For instance, we may presume that the ancestor of two species the males of which exhibit decorative colours, would have resembled the duller females and young of the existing forms; e.g., the primitive ancestor of the common Bullinoh (Pyrrhula europsea) no doubt resembled P. murina of the Azores, and that of the Linnet (Linota cannabina) the duller coloured I'wite (Linota montium). Yet when these two Finches are crossed in captivity, the "mule" has a pink breast, a piece of decorative coloration which was almost certainly absent in the common progenitors of the Bullfinch and Linnet genera.

Lastly there is strong reason to suspect that species arise suddenly as far as colour-variations are concerned. The Red-headed form of the beautiful Gouldian finch (Poophila mirabilis), is an example, and is especially interesting as showing how such sports may tend to increase, as it has been found by Dr. Bntler to be more attractive to the hen than the less brilliant black-headed variety. (O p. cit. p. 176).
3. A SUGGESTION TOR A MORE NATURAL CLASSIPICATION OF THE Plochide.

Considering that this group of Passerine birds has been studied far more thoroughly than any other, being well known in captivity (in which state many species breed) it is rather remarkable that ornithologists have not availed themselves to a greater extent of the exceptional opportanities thereby afforded them of arriving at a natural olassification of the group. As a matter of fact, any one who has studied these birds in life will see that the greater or less development of the first primary can hardly be deemed a character of importance as contrasted with the marked difference of colouration, general size, and habits, which separate the true Weavers, with their near allies the Whydahs, on one hand,
from the Munias or Mannikins, Grassfinches and Waxbills on the other. We can bardly hope for anatomical characters of distinction in much a group as the Oscinine Passeres, and so in my search for a structural cbaracter to separate these sections, already partially indicated by Gray in the "Hand List" and by Dr. Butler in his valuable work, I studied our collections in the Indian Museum with a view to discovering an external one which should be correlated with the pecalianities of plumage and disposition so long familiar to fanciers. This I have found, I think, in the prolongation of the culmen on to the forehead, which obtains in Weavers and Whydahs to a far greater extent than in the Mannikins, Waxbills, and Grassinches. I should therefore diagnose the two groups as follows :-
A. Posterior end of the culmen produced back apon the forehead, so that the length from its hinder end to a point midway between the nostrils exceeds the breadth of the bill at this point, and a line drawn between the nostrils forms the base of an isosceles triangle \qquad Weavers and Whydahs - Ploceines. This group averages much larger than the others, some of its members being as large as a Thrush, and many as big as Sparrows; the upper plamage is generally striated like a Lark's in females and males ort of breeding-plumage: the male as a rule undergoes a marked change of plumage at the breeding-season : the note is lond and harsh, and the disposition, although the birds are social in habit, savage and quarrelsome, little affection being manifested even between the sexes. The Whydalis cannot be separated from the trae Weavers, as there is a complete gradation between the two groups.*
B. Posterior end of the calmen only slightly invading the forehead, so that the length from its hinder end to a point between the nostrils is less than the breadth of the bill there, and a line drawn between these forms the base of an approximately equilateral triangle. Mnnias, Waxbills, and Grass.finches Spermestings.
The birds of this group are all small, none equalling a common sparrow in size, though the biggest, the well-known Java Sparrow (Munia oryaivora) is nearly as large, and far bigger than many Ploceinas; but few approach this bird in stature, and some are among the most minnte of Passerine birds. They never display a lark-like striated plamage, nor does the plumage of the male undergo a change, except in the Avadavats (Sporreginthus amandava and S. flavidiventris). Their notes are low and often pleasant, and their disposition generally

[^12]affectionate and caressing to a degree, even with birds of alien species. Egg always white.

4. Some experiments on Sexual Selection in the Avadafat.

The affectionate and caressing disposition of the Mania group, above alluded to, suggested one of them as a fit subject for experiments in Sexual Selection, the direct evidence for which is as yet somewhat to seek. And as the Avadavat (Sporreginthus amandava) shows a marked sexual difference in colouration during the breeding-season and varies in the intensity of this nuptial decoration of the males, it seemed the best species to select, being also very easy to procure. Accordingly, having procured a three-compartment cage, and fitted it with two perches running through all three compartments, which were separated by wire netting, so that the birds conld easily see each other and sit side by side, I made the following experiments with this species :-
No. I.

Placed in the cage on August 27 th, three birds just bought, all from the same small cage in the Bazaar :-a hen (a), the only one in the lot from which these were taken; a bright coloured scarlet-red cock (A) well spotted with white, and a dull copper-red cock (B), deficient in spots on the breast. A lost some of his tail in handling.

August 28th. All birds well, but wild; both cocks trying to get in with hen; hen inclined to try and get in with cock A.

August 29th. A, which was not quite so active as B yesterday, looks very sick; hen nevertheless sometimes inclined to sit on his side of her compartment. Both cocks trying to get to her, and sitting much closer to the side than she does.

August 30th. A looking as well as before to-day; hen sitting mostly at his side of the cage, and the dung there proves she has roosted on that side against the wire.

August 31st. A still looking well, and hen markedly inclined to sit mostly his side ; B not looking very well ; one of them singing.

September 1st. A well, hen markedly inclined to sit by him; B looking very seedy. One bird still singing. (I think A in both cases). Hen has still roosted on his side (A 's).

September 2nd. A well, hen definitely sitting by him : has evidently roosted that side all the time; B looking very seedy still.

September 3rd. A well, B dead; I think he has been sickly all along, as he is very thin; but as above noted, be was lively enough at first. He has had diarrhooa of late. He ate small millet readily enough, but I don't think took much of a larger seed I gave later, which the other eat all right. (I gave them subsequently small millet).
No. II.

September 3rd. Removed A (who I found was minus one hind claw, lost some time since) and replaced him and B by two birds procured from same dealer, from a cage containing cocks only. These did not differ so much as A and B, but one (C) was more scarlet and better spotted than the other (D) which was coppery in hue. Cleaned away dung from under hen's top perch, and put C in B 's place, and D in A's, so that locality could make no odds. C is minus some of his tail, as A was.

September 4th. Hen, though she has evidently roosted next D, in the old place, showed a marked preference for C's side. She is hardly so well as usual, and has slight diarrhcos, D wants to get in with her. Both he and C look well. One was singing to-day.

September 5th. All birds well : one singing; hen mostly on side of C. I think she roosted next him last night.

September 6th. All birds well; heard D. singing; the hen sits sometimes on his side, but I think, on the whole, more on C's, judging especially by the dung deposited.

September 7th. Hen sitting on both sides, most on C's in afternoon at all events. She sits very close to the wire now. Have had cage well cleaned.

September 8th. Hen still varying, but at evening sitting most by C. I doubt whether she roosted by him last night, however, though evidently keeping his side by day.

September 9th. Hen varying a little, but sitting mostly very close to \mathbf{C} in morning. Heard C singing. Not observed in afternoon, being Saturday. Quite settled to C,I think.

September 10th. Hen sitting near D when I first saw her, settled near C as usual at noon. Removed her.

> No. III.

September 11th. Replaced hen by another (β) a particalarly fine big bird, got from same dealer, out of a cage containing hens only. Hen sat close to D at first, latterly to C.

September 12th. Hen distinctly favouring C, and often sitting near him; heard him sing once.

September 13th. Hen seen once or so sitting by D, but oftener by C ; cage cleaned, and dung seems to show she has been more on D's side than C's to-day. Yet appearances as above stated.

September 14th. Hen has evidently roosted on C's side. Sitting mostly by D, to-day; heard bim sing. Late, when she was sitting by D, C sang several times, aud she went and sat by him a little while.

September 15th. Hen seems to have roosted by D: she has sat on the whole more by him to-day, as proved by dung and observation. Both cocks have been singing, about equally well. Had her cage cleaned.

September 16th. Hen apparently roosted close to C, and on the whole inclines to him to-day. I had her cage cleaned again to-day. Heard C sing when she was sitting by him.

September 18th. Made no observations yesterday, but cage was cleaned about midday, and dung showed plainly to-day hen had roosted by C; she had also sat much near D. Hen's cleaned again first thing after examination. Saw her sitting by D to-day, and dung seems to show she has sat there more ; but at evening mach inclining to sit by C.

September 19th. Dung showed hen had roosted by C, and though sitting more by D at first, in the afternoon and evening she was settled by C ; D very anxious to get in with her, as he has always been; 1 have not seen C equally so.

September 20th. Was not quite sure from state of cage which side hen had roosted; had it cleaned, and found later she had sat both sides; a little more by D; in afternoon sitting by C, however, as usual. Caught both cocks, and let them in with her together.

D's tail mach disarranged by his frequent attempts to get to her. There was no fight, however, and she seemed rather inclined to sit by D, so I released the lot.

It is obvious from these experiments that hen (a) preferred the brighter-coloured males, while no such certain conclusion can be come to in the case of (β) Possibly the superior brilliancy of C was compensated for by D's obvious eagerness. It should be remembered also that brilliant colour in many birds at all events is a sign of high condition and saperior age, so that the problem to be dealt with is by no means a simple one. All I can claim to have shown in these few experiments is that the method of conducting them, suggested by Moseley (Naturalist on the Challenger, p. 373) is a perfectly feasible one, given a sufficiently demonstrative species varying in colouration. A more extensive series would no doubt result in a definite settlement of this most interesting question, and such can easily be made by any fancier of birds.

INDEX.

Names of New Genera and Species have an asterisk (") prefixed.

Abaratha ransonneti, 226
Abisara echerius, 196
". pranosa, 196
Acacia, 204, 247, 249 arabica, 246 cessia, 201 Catechu, 248 concinna, 248 leucophlea, 199 nilotica, 245 vera, 246
ACANTHOCYCLIN 8 , 5, 96
Acanthocyclus, 95, 96
Acanthodromia, 123, 128, 133, 134
$"$
margarita, 184
Acanthus, 225
Accipiter nisus, 108, 243
$"$ virgatus, 243
Achelous, 9, 29, 30, 32
" crassimanus, 28
" gramulatus, 45, 46, 47
" orbicularis, 47
,, Whitei, 44
Acidalia niphe, 194
Acreinas, 195
Actarinde, 3
Aegialitis dubia, 109
Aegithina tiphia, 238
Aethiopsar grandis, 240
Aethopyga dabryi, 2\&1
" gouldix, 241
", ignicauda, 241
" nepalensis, 241
Agama himalayana, 108
" tuberculata, 108
Aganosma cymosa, 176
Aidemosyne cantans, 253
malabarica, 253
Albissia Moluccana, 218
Alcippe phayrii, 237
Alcurus striatus, 238
Alysicarpus vaginalis, 199
Amarantus, 198
Amathusinhe, 186
Amaurornis phosnicurus, 244
Amblypodia anita, 203
" darana, 203, 204
" naradoides, 203, 204

Amphitrite, 9, 29, 30, 31
argentata, 36
argentatus, 36
" \quad var. glareosus, 37
gladiator, 35, 45
gracilimanes, 45
Haanii, 35
hastatoides, 38
longispinosa, 40
media, 35
petreus, 37
speciosa, 45
tenuipes, 42
vigilans, 40
Ampittia dioscorides, 228
" maro, 228
Andrapana jumbah, 189
Anisopus, 7
Anomoura Dromidea, 124
Anomodres Dromiens, 124
Anonacese, 224
Anthracoceros albirostris, 243
Anthus maculatus, 241
Antigonus sexendis, 225
Apatura jacintha, 192
Apaturides, 187
Apaustus luteipalpis, 238
" sinhalus, 227
Aphnะers, 174, 205
" fusca, 205
" greeni, 206
" ictis, 206
lasularia, 206
lohita, 206
nubilus, 206
schistacea, 206
vulcanus, 205
$\because \quad$ VAr. manimus, 20
zebrinus, 206
A poctnacese, 176
Appias, 174, 216
", albinn, 172, 216, 217
" aperta, 218
" dapha, 219
", hippo, 218
" indra, 216
", libythea, 218
.. narendra, 216

Index.

Appias neombo, 216, 217
" paulina, 172, 217, 218
" taprobana, 218
," vacans. 218
Arachnodromia, 123, 127, 180, 131
Baffini, 132
Arachnothera magna, 242
Arboricola rufigularis, 244
Arcania, 25
Arctomys caudatus, 107
,, himalayanus, 107
" hodgsoni, 107
Ardeola grayi, 245
Ardisia, 196
Arenaeus, 29
Abginnina, 187, 194
Argynnis hyperbius, 194
Aristolochia, 220, 821
Arrhopala abeous, 204
" amantes, 804
" centaurus, 204
" pirama, 204
Artamides, 120
Ascidiophilus, 129
Asclepias, 176, 177
Asecla, 18
Astictopterus stellifer, 227
Atrlecyclina, 5, 96, 99
Atelecyclus, 96
Atella phalanta, 194
" phalantha, 194
Azanus crameri, 199
" jesous, 199
" ubaldus, 199
") sena, 199
Badamia exclamationis, 238
Baoris kumara, 231
" oceia, 280
, penicillata, 230
" seriata, 231
Baracus vittatus, 227
Bathynectes, 7, 17
Belenois agrippina, 216
angusta, 216
aurigenia, 216
lordaca, 216
mesentina, 172, 216 fervidior, 216
syrin" "8, 216
taprobana, 216
Bellia, 103
Benthochascon, 7, 10; 15
Hemingi, 15
Bibasis' sena, 233
Bindahara areca, 209
" phocides, 209
, sugriva, 209
Boswellia, 249
Bouganvillea, 120
Brachypternus, 242
" aurantius, $\mathbf{2 4 2}$

Brachyola, 3, 123, 125, 127, 131, 138, 146. 151

Cyclometopa, 1
", Primigenia, 123, 124
vera, 125
Bryophyllum, 199
Butsa, 201
Buteo desertorum, 108
"feros, 108
Byblia ilithyin. 195
Caladium, 186
Calamus sp., 228
Callinectes, 9,29
Callosune dane, 215
" oucharis, 214
, limbata, 215
", sanguinalis, 215
Calotropis, 176, 177
Calysisme, 182
" \quad drusia, 181
" mineus, 181
" perseus, 180, 181
" polydecta, 180
" rama, 181
") subdita, 181
Camæna, 205
Camena, 205
deva, 205
Camplppagids, 120
Campochæra, 121
Campophaga melanoschistn, 240
Camptonym, 8
Cancellus, 111
Cancer, 95
$" \quad$ admete, 82
artificiosus, 151
callianas8a, 57, 60
cedo-nulli, 34
cruciatus, 51
fasciatus, 54. 56
hastatus, 38
integer, 97
lanosus, 187
menas. 18
", marinus sulcatus, 18
" menestho, 35
" natator, 61
" olivaceus, 87
" pelagicus. 32, 34
" prymna, 78
" reticulatus, 34
" sanguinolentus, 82
" serratus, 27
") sexdentatus, 51, 54, 55
" (Xantho) integer, 97
Canceriens arqúsa, 94
Cancrides, 1, 2, 4, 7, 12, 94, 95
Gancrines, 4, 5, 95
Ganchint, 1, 2, 95
Gancroidea, 2
" CYCLOMETOPA, 2

Cancroidra portuninea, 2
Caphyra, 6, 8
Caphybinae, 4, 6, 8, 10, 18
Capparis, 210, 216, 218, 819, 220
Capra falconeri, 106
" Sibirica, 106
Caprona raneonnetii, 226
". ransonnettii, 226
Carcinides, 12
Carcinines, 4, 5, 6, 7, 10, 12
Carcinoida, 7
Carcinus, 4, 6, 7, 10, 12, 95
" menas, 18, 14
" moenas, 13
Carduelis caniceps, 109
Carupa, 9, 10, 25
". leviuscula, 26
Cassia, 211
Castalius decidia, 203
" ethion, 203
" hamatrs, 208
" interruptus, 208
" rosimon, 203
Catapæcilma elegans, 208
Catapceilma 208 " major, 208
Catochrysops cnejus, 202
lithargyria, 208
" pandara, 202
" strabo, 202
Catometopa, 3, 123
Catophaga galene, 217
lankapura, 217
leis, 218
neombo, 216
paulina, 218
venusta, 217
Catopsilia, 172
catilla, 211
chryseis, 211
crocale, 211
gnoma, 211
ilea, 211 pyranthe, 211
Celenorrhinus spilothyrus, 285
Celtis, 195
Oentropus sinensis, 248
Ceropegea, 177
Certhia discolor, 289
" manipurensis, 285, 239
Ceryle varia, 243
Cethosia mahratta, 191
" nietnori, 191
Chapra agna, 280
". mathias, 880
Chaptia aenea, 239
Charames, 187
fabius, 187
, imna, 187
" jason, 187
" psaphon, 187

Charayina, 187
Charus helenus, 221
Charybdella, 8
Charybdis, 8, 9, 11, 47, 48, 49, 67, 71, 73, 87
affinis, 66, 59
anisodon, 64
annulata, 54, 56
bimaculata, 69
callianassa, 57, 59, 68, 70, 86
crucifara, 51, 58, 54, 55, 56, 57, 59, 63, 65, 68
granulatus, 61
hoplites, 66, 68
" var. pusilla, 67
" " vadorum, 67
investigatoris, 70, 73
merguiensis, 65
miles, 68
natator, 61
orientalis, 68
ornata, 64, 66, 68, 69
quadrimacwlata, 54, 55, 56
Rivers-Andersoni, 53
rostrata, 59
truncata, 64, 67, 69, 70
truncatus, 67
variegata, 68. 60, 64, 70
variegatus. 60
(Goniohellenus) hoplites, 66
" var. pusilla, 67
"̈adorum, 67
ornata, 64
(Gonioneptunus) bimaculata, 69
investigatoris, 70
truncata, 67
(Goniosoma) affinis, 56
annulata, 54
callianassa, 57, 86
crucifera, 51
merguiensis, 55
miles, 68
natator, 61
orientalis, 63
quadrimaculnta, 54
Rivers-Andersoni.
53
rostrata, 50
varieguta, 60

Cheiragonus, 96
Cheritra freja, 207
jaffra, 207
pseudojafra, 207
Chibia hottentotta, 121
Chilades laius, 197
" putli, 197
" trochilus, 197
" varunana, 197
Chilasa clytioides, 222

Chilasa dissimilis, 228
" lankeswara, 292
Chimarrhornis lsucocephalus, 109, 241
Chiroplatæa, 111
Chittira fumata, 177 taprobana, 177
-Chlænopagurus, 118

* " Andersoni, 115

Chlorodines, 8
Chloropsis aurifrons, 288
" chlorocephala, 238
" hardrwickii, 238
Choaspes benjamini, 238
Chrysocolaptes gutticristatus, 242
Cinnamomeam, 224
Cinnarus, 208
Circus æruginosus, 108
, cyaneus, 108
Cirrhochroa, 174, 192
" cognata, 198
" lanka, 192
" relata, 192
" swinhooi, 192
" thais, 192
Citrus, 197, 222
Clerodendron, 206
Coenobita, 112
Canophthalmoida, 8
Comophthalmus, 8
Coladenia indrani, 225 tissa, 825
Combretum, 283
Conchœcete8, 123, 129, 135, 186, 150

* " andamanicus, 152
" artificiosus, 129, 151
Convolvolacers, 206
Copsychus saularis, 241
Coracias affinis, 243, 253
" indica, 258
Corvus cornis, 109, 253
" corone, 253
" macrorhynchus, 106, 109
Corystes, 103
Cortbtide, 1, 2, 5, 7, 108
Cortstirns, 2, 94, 103
Coryeroldel, 2, 95, 103
toides, 108
Corystoides, 103
Coturnies japonica, 244
Crastia asela, 178
" folderi, 178
" frauenfeldii, 178
" echermeri, 178
Cratsera, 818, 218
Cronius, 9, 67
Cryptodromia, 128, 129, 138, 185, 186, 140, 141, 147
- " bullifora, 141, 148
-

canalioulata, 141, 142
de Manii, 141, 144
cbalioides, 141, 146, 147

Cryptodromia Gilesii, 141, 146, 147
" Hilgendorfi. 141, 145
", lateralis, 129, 141, 147
" pentagonalis, 143
" \quad ep., 144
" tomentosa, 148
" tuberculata, 141, 149

- " \quad "ar. pileifora, 141

Cupha erymanthis, 191
" $"$ maja, 191
" placida, 191
Curcuma, 229
Curetis thetis, 205
", thetys, 205
Cyaniris akasa, 197
lanka, 198
lavendularis, 197
limbatus, 198
puspa, 197
singalensis, 197, 198
yanops asiatica, 243
franklini, 248
Crclinea, 95
Cyclometopa, 1, 2, 5, 123
Cyclomitores, 2
Cygnus olor, 109
Cylista, 197
Cynanchum corymbosum, 177
Cynitia puseda, 189
Cynthia asela, 191
" saloma, 191
Cyornis cyanous, 840
Dafila acuta, 252
Dalbergia, 226
Dalchina teredon, 284
Danaida, 175
Danaidide, 176
Danainse, 175
Danais, 175, 223
aglea, 177
ceylanica, 177
chrysippus, 174, 177, 192
dorippus, 192
exprompta, 178, 176
grammica, 177
limniacs, 176
limniace. 176, 283
melanoides, 177
pleaippus, 177, 186
septentrionis, 177
similis, 173
taprobama, 178, 177
(Chittira) taprobana, 177
(Limras) chrysippus, 177
(Parantica) aglea, 177
(Radena) exprompta, 176
(Salatura) plewippus, 177
(Tirumala) limniace, 176
" . limniace, 176
" ${ }^{2}$ septentrionis, 177
Danaus, 175

Delias eucharis, 178, 210
Dendrocitta himalayensis, 236 rufa, 286
Dendrocopus atratus, 242
Derris," 233
Dewdoris epijarbas, 208
lankana, 208
Dicera, 108, 104
Dicranodromia, 127, 188
Dicrorider, 119, 120, 121
Dicrurus ater, 121
" leucogenys, 181
Dioscorea, 226
" pentaphylla, 226
Dioopyros, 188, 210
Discophora lepida, 186
Dissomurus, 119
" alcocki, 119
" paradiscus, 119, 120, 239
Doleschallia bisaltide, 194 polibete, 194
Dolichos, 208
Domecia, 111, 117
" glabra, 117
," hispida, 117, 118
Dophla evelina, 188
Doris, 226
Dromia, 188, 189, 180, 181, 183, 185, 186, 187, 140, 141, 147, 149, 158, 162
artificiosa, 151
australiensis, 140
bullifera, 143
canaliculata, 142
ciliata, 129
conchifera, 151
cranioides, 187, 188, 149
de Manii, 144
sbalioides, 145, 146, 147
Gilesii, 146
granulata, 147
Hilgendorfi, 145
indica, 189
Kendalli, 158
Rumphii, 129, 187, 189, 151
sculpta, 146
tomentosa, 142
tuberculata, 141
" var. pileifera, 141
unidentata, 187, 139, 149
(Cryptodromia) bullifora, 143 canaliculata, 142
de Manic, 144 obalioides, 145 Gilesii, 146 Hilgondorfi, 145 tuberculata, 141
, var. pileifora, 141
, (Dromidia) awstraliensis, 140

Dromia (Petalomera) granulata, 147
,, (Sphserodromia) Kendalli, 153
Dromiacta, 123, 124, 125, 129
Dromiaces, 124
Droxider, 125, 127
Dromidea, 127
" vel. Anomodra mailidica SUPERIORA, 124
Dromidia, 123, 129, 135, 136, 140
" australiensis, 140
" cranioides, 138
" Kendalli, 158
" unidentata, 189
Dromirns, 125
Dromilde, 123, 128, 135, 168
Dromidea, 123, 124, 185, 127, 130
Dryonastes ruficollis, 287
Dynomene, 123, 128, 133, 184, 135, 163
" hiopida, 134
" margarita, 184

* " pilumnoides, 138

Dinomenide, 128, 125, 127, 183
Hbenaces, 188
Echis carinata, 108
Elymnias, 186
fraterna, 186
lutescens, 178, 186
panthera, 178, 186
singhala, 173, 186
undularis, 186
(Melynias) singhala, 188
Elfinimis, 186
Embelia, 200
Embellia, 196
Emberisa aureola, 241
stracheyi, 109
Epidromia, 140
Episoanthus, 118
Ergolis, 188
" ariadne, 194
", minorata, 194
") taprobana, 194
Erimacrus, 96
ERIPEIINE, 8, 4, 117
Brismatura lewcocophala, 109
Euctonota, 29
Eudromia, 129
Fulopis, 187
" athamas, 187, 188
" " agrarius madeus, 187
" samatha, 187
Buphylam, 6, 9, 941
Euplcea, 178, 228
" asela, 178, 178, 179, 228
" biseriata, 178
" camorta, 178
" castlonaui, 178, 179
" core, 178
", coreoides, 179
" coreta, 179
" corus, 178, 179

Index.

Euploea esperi, 178
$»$ felderi, 178
" frauenfeldii, 178
", kollari, 179
" lorquinii, 178
" montana, 172, 179, 223
", schertzeri, 178
" scherzeri, 178
", sinhala, 179, 186
", (Crastia) aeela, 178
" \quad felderi, 178
" " frauenfeldii, 178
" " acherweri, 178
, (Narmada) montana, 179
", (Pademma) sinhala, 179
," (Tronga) biseriata, 178
Eubytelina, 187, 194
Euthalia, 187
evelina, 188
garuda, 189
" laudabilis, 188
") lubentina, 189
" puseda, 189
", sandakana, 189
", vasanta, 189
" (Dophla) evelina, 188
futhalina, 187, 188
Eruvanessa, 284
Fuשanthe, 187
ourinome, 187
Iverés argiades, 200
" parrhasius, 200
Excalfactoria chinensis, 244
Falco barbarus, 108
subbuteo, 108
Ficus, 178, 204, 283
Flacourtia, 191
Galerita cristata, 109
Gallicrew cinereus, 244
Gangara thyrsis, 228
Garrulax leucolophus, 237
" moniliger, 237
" pectoralis, 237
Gecinus chlorolophus, 242
" occipitalis, 242
", squamatus, 108
Glaucothoe, 111
Glycosmis, 196
Gomalia albofasciata, 226
Gorneza, 103
Gonania, 203
-Goniohellenus, 9, 48, 50

Gonioneptunus truncata, 67
Goniosoma, 8, 9, 11, 47, 48, 49, 60, 61, 63,

$$
64,67,71,73,87,90,92
$$ affine, 50,56 affinis, 56 annulata, 54 annulatum, 49, 54

bimaculatus, 51
callianassa, 50, 57, 60, 86
crucifera, 51
cruciforum, 49, 51
danæ, 71
dubium, 64
erythrodactylum, 61
Hellori, 55
hoplites, 51, 66
inæquale, 23, 24
investigatoris, 61
luciferum, 54
merguiense, 40, 51, 55
merguienais, 55
miles, 60,62
natator, $50,60,61$
orientale, $50,55,63,87$
orientalis, 63
ornatum, 65
ornatus, 50
quadrimaculata, 54
quadrimaculatum, 49, 64
Rivers-Andersoni, 49, 53
rostrata, 59
rostratum, 50, 59
semdentatum, 51
truncatum, 68
truncatus, 51
variegata, 60
variegatum, 50,67
" var. bimaculatum, 69
" " callianassa, 60
(Thalamonyw) danx, 71
Graculus eremita, 109
Graminacese, 232
Graucalus macii, 240
Grewia microcos, 225
Gryllopagurus, 111, 112
Gypxtus barbatus, 108, 108
Gyps himalayanus, 106
, himalayensis, 108
Halcyon smyrnensis, 243
Halpe brunnea, 830
ceylonica, 230
decorata, 230
egena, 230
moorei, 280
Halys himulayanus, 107
Hanipha, 183
" dynsnte, 183
", sihala, 183
Hantana infernus, 224
Haridra psaphon, 187
" serendiba, 187

Harimala montanue, 228
Harpactes erythrocephalus, 248
Hasora badra, 888
" butleri, 282
" chromus, 888
Hebomoia australis, 219
" glaucippe, 819
" javanensis, 219
Hedrophthalmus, 9
Hedychium, 229
Helicteres ioora, 226
Heliotropium atrigosum, 197
Hellonus, 9, 29, 81
andersoni, 89
Brockii, 43
hastatoides, 88
longispinosue, 40
spinipes, 39
tonuipes, 42
tuberculosus, 42
Hemieus flavala, 238
maclellandi, 838
Henicurus immaculatwe, 240
Hesperia alice, 232
disu, 827
galba, 227
" kolantus, 832
" naso, 227
" tuprobanus, 233
Hesperidde, 175, 224, 225
Hestia jasonia. 175
". lynceus, 176
Heynia, 232
Hierastus fasciatus, 108
Hipposeritia narendra, 216
Hiptage, 232, 233
Homalodromia, 131, 149
Coppingeri, 149
Homarids, 125
Hombla, 124, 129, 180, 154, 155, 156, 160, 161, 162, 168, 166, 167
andamanica, 158
" barbata, 156, 158, 159, 168
" cuvieri, 156
", megalops, 156, 158
" orientalis, 156
", profundorum, 156, 159
Homolas, 124, 129, 166, 158, 160
Hoyolides, 124, 126, 129, 130, 154
Homolidea, 128, 124, 125, 126, 127, 129, 154
Homoliens, 124, 126
Homolodromia, 128, 125, 127, 181, 182, 188. 149

Homolodromide, 128, 127, 130
Homologenus, 129
Homolopsis, 129
Hoplopterus ventralis, 245
Hoplozanthus, 4, 12
Horagn cingalensis, 207
ciniata, 207

Hioraga onyx, 207
Ноуа, 176
Huphina, 220
" hira, 219
" nerissa, 819, 220
pallida, 219, 220
phryne, 819, 220
remba, 820
zeweippe, 219
Hyarotis adrastus, 228
Hydrocarpus wightiuna, 192
Hypochern, 254
Hypochoncha, 129
Hypolimnas bolina, 192
"" misippus, 174, 192, 193
Hypolyczma nilgirica, 207
Hypopeltarium, 96
Hypsipetes psaroides, 288
Hypsophrys, 124, 129, 130, 154, 162, 163
" longipes, 164
$\because \quad$ superciliosa, 168, 163
Iambrie salsala, 287, 288
Ianthia rufilata, 241
Idmais modesta, 214
" tripuncta, 215
Miades parinda, 222
Iraota mæcenas, 204
" timoleon, 204
Isamia sinhala, 179
Ismene ataphus, 282
." adipodea, 232
Inias, 814
cingalensis, 213, 214
marianne, 214
pirenassa, 213, 214
pyrene, 214
seoia, 814
Iyngipicus canicapillus, 848
Jamides bochus, 172, 201
Junonia almana, 191
" atlites, 190, 191
" asterio, 191
" hierta, 190
" iphita, 190
" lemonias, 191
" anone, 190
" orithya, 190
" orithyia, 190
" oritya, 190
Kxempfæria pandurata, 201
Kallima mackrooodi, 198
" philarches, 174, 198
$"$ wardi, 198
Kittacincla macrura, 841
Kraussia, 95, 96, 97
" integra, 97. 98
" nitida, 97, 98
\because rastripes, 98
Laertias romulus, 222
Lampides relianus, 201
" agave, 199

Lampides celeno, 201
coruscans, 201
elpis, 201
lacteata, 201
pseudelpis, 201
Lanitdes, 180
Lanius collurioides, 289
" tephronotus, 289
Latreillia, 111, 118, 184, 129, 180, 165, 167
" elogans, 118, 168
", pennifera, 118, 119, 160, 168
Iatreillidde, 124, 126, 129, 180, 165
Latreillopsis, 111, 124, 129, 130, 165 biopinosa, 111, 118, 166
Leguminosis, 200, 202, 211, 212
-Lelew, 234
, limenitö̈des, 234
Lemonilde, 195
Lepidoptera, 179
Leptosia miphia, 210
Lethe, 173, 184
" confusa, 184
daretis, 184
" drypetes, 184
" drypetis, 184
" dymsate, 173, 188
", dyrta, 184
" neelgheriensis, 184
" neelgherriensis, 184
" rohria, 184
" todara, 184
" (Hanipha) dynsate, 183
Libytheinas, 195
Libythea lepita, 195
" myrrha, 195
" " sanguinalis, 195
"r rama, 195
Limenitina, 187, 189
Limenitis calidosa, 189
" procris, 189
" (Moduza) calidosa, 189
Limnas chrysippus, 177
Linociera, 233
Linota cannabina, 253
, montium, 258
Liocarcinus, 7
Lioptila gracilis, 837
Lissocarcinus, 8, 10, 18, 19
" levis, 19, 21
$" \quad$ orbicularis, 19, 20
" polybioides, 19
" pulchellus, 20
Lobotes surinamensis, 14
Loranthacese, 207
Loranthus, 189, 205, 210
Loxura arcuata, 208
atymnus, 208
Lupa, 9, 29
" forceps, 24
", pelagica, 34

Lupa sanguinolenta, 32
Lupea gladiator, 85
granulata, 45
lobifrons, 27
tranquebarica, 27
Impella, 9
LOPINE, 4, 6, 8, 10, 22
LUPOCYCLOIDA, 9, 88
"Lupocycloporus, 9, 81, 82 gracilimanus, 45 whitai, 23, 24, 44, 68
Lupocyclus, 9, 10, 17, 28, 28

$"$	inequalis, 28 orientalis, 16, 17 philippinensis, 24
$"$	roturnatur, 28, 24, 25 " strigous, 28, 24
$"$	(Parathranites) orientalis, 16, 17

Lupoida, 8, 87
Lycsenn gaınra, 199
Iycsenesthes lycsenina, 199
Lfcernides, 175, 196
Mabuia, 108
Macroplaea corus vitrina, 179
olisa, 179
Macrura, 128
Macrurиs laevis, 14
" (Malacocephalus) lacvis, 14
Magnoliacere, 284
Maioidea-corybtoidea, 2
Majoidea $\quad 108$
Malacocephalus laovis, 14
Mamillifera, 115
Maranta, 829
Marsdenia, 176
Matapa aria, 228
", subfasciata, 228
Megalama marshallorum, 242
Megalurus palustris, 239
Megisba malaya, 196
" thwaitesi 196
Melanitis abdullx, 185
bela, 185, 186
" determinata, 185
", ismene, 185, 186
" leda, 185
" suyudana, 185
" tambra, 185
" varaha, 185
Melanochlora sultanea, 238
Meliosma, 283
Melitsina, 187
Melynias, 186
" singala, 186
" singhala, 186
Menelaides ceylonica, 221
" hector, 221
" jophon, 221
Menippinis, 3
Merganser castor, 109

Inder.

Morula masima, 100 ", morula, 100
Metacarcinus, 95
Miorohierace eutolmus, 24
Yioroperdio manipweimsis, $110,886,844$
1 Tatopagurus, 111
Modecca, 186
Modusa calidasa, 189
calidosa, 189
Munia, 250, 252, 255
" atricapilla, 252
" malacea, 252
" oryxivora, 25s
Munidopeis, 101
Iustela foina, 107
Mycalesis, 174, 182.
blasius, 180
junonia, 188
justina, 180
mandata; 180
mandosa, 180
mineus, 181
patnia, 188
регявия. 180, 181, 18s, 188.
polydecta. 180, 181, 182, 188
rama, 181
subdita, 181
(Calysisme) persews, 180
polydecta, 180
rama, 181
subdita, 181.
(Nissanga) patmia, 188
(Orsotrisena) mandate, 180
Mycerobas melanomanthw, 281
Myrina isabella, 209
" jolcus, 209
Nacaduba ardates, 200, 201
atrata, 200
hermus, 200
macrophthalma, 200
nortia, 200, 201
prominens, 200
viola, 200
Naia tripudiame, 107
Narmada montana, 179
Nautilocorystes, 1, 108, 104
" investigatoris, 104
Nectari" ocellatus, 104
Nectaria jasonia, 175
Nectocareimus, 6, 7
Nelsonia, 188
Nemeobitise, 196
Neopithecops salmora, 196, 197
Nopheronia, 820
" ceylanica, 220
" ceylonica, 290
" fraterna, 280
n pingasa, 220
soptis epiculifera, 280
Noptis disrwpta, 190 :
,, ourymerte, 180

Neptis nordonia, 190
jumba, 189
jumbah, 189
kamarupa, 190
sinuata, 180
swixhoei, 190
varmona, 190
(Rahinda) sinuatr, 180
Neptumus, 9, 11, 24, 88, 20, 80, 81, 89, $48,60,68,67,78,98$
andersoni, 81, 89
argentatus, 31, 86, 94 " var. glareosus, 87
armatus, 34
Brockii, 80, 82, 43
convemus, 32
gladiator, $81,35,87$
if var. argentatus, 88
gracilimanue, 88, 45
gramulatus. 32, 45, 46, 47
hastatoides, 80, 81, 88, 89, 40
longiopinosus. 38, 40
orbicularis, 82, 47
pelagicus, 31, 84
petreus, 81, 97
sanguinolentus, 31, 32, 34, 85
sieboldi, 82
spinicarpus, 87.
spinipes, 80, 32, 89
tenuipes, 81, 48
trituberculatus, 34
tuberculosus, 30, 32, 37, 49, 13, 44
vigilans, 40
" var. obtusidentatus, 41
Whitei, 28, 24, 32, 44, 45, 68
(Achelous) granilatue, 45, 46, 47
orbicularis, 49
(Amphitrite) argentutwe, 86上 " Far. glareosus,
" gladiator, 85
") petreus, 37
(Hellenus) andersoni, 89
Brockii, 18
" hastatoides, 88
" longiopinosus, 40
" spinipes, 89
" tomuipes, 48
", tuberculopme, 48
(Lupocycloporus) graoilimanus,
15
Whitoi, 28, 84,
Nerium, 178
Nilasera amantes, 204
" pirama, 204
Nissanga patnia, 188
Notocrypta feisthamelii, 829
Nychitona miphia, 210
NyMPhatide, 176

Ntmphalima, 187, $180 \cdot: 1$
NTMPhaline, 187
Nyroca beeri, 245
ferruginea, 201
Oceanus, 47
crucifer, 51
Oridia, 103
Olas, 208
Quicath jutroa, 200
Oreocindets. 121
Oriolus melanneophialus, 940
tratilfii, 240
Ormittopterne darkive, 220
Orphsides erithonius, 221
Orsotrisena masdatu, 180
Ostraconotus, 111, 112
Otocompea flatvicentris, 288
Ouphinea, 209
Ougeinia, 202
Ovaliper 7 .
Oviatmehura, 107
" vignei. 106
Oxybhyncha, 2
Coursisdes, 2, 108
Ozines, 3, 41
Pailimma sinhala, 179
Padraona dara, 229
gola, 229
goloides, 289
mesoider, 2:0
psouciomsesa, 829
Painke lobadea, 828
Pagurus reidjungan, 84
Palseornis fasciatus, 848
'i"
roea, 843
Pallat, 187
n. decius, 187

Palmadeat, 178, 186, 229
Pamphila larika, 281
subfonest, ata, 281
tuxilus, 229
Papilio agamommom 224
alcibiades, 228
amaseme, 219
antipathes, 288
-aristoloshise, 821
atalanta, 284
amidn, 224
catrides, 219, 220
beqlomicue, 228
cfstien 228, 208
" lankeswara, 282
in panope, 222
clytioudes, 228
copia, 219
coronis, 219, 820
erino, 228
deksha, 221
demoleus, 172, 281
dincipper, 192 dissimilis, 228, 288

Papilio suagets, 219, 2×3
hector, 881
holsmur, 221
hira, 218:820.:

inaria, 192
jason, 284
jophon, 281
lankeswara, 293, 293
mooreanks, 245
niphe, 194
nomius, 883
pandiyana, 2:3
parinda, 882
phryme, 219
polymnestor, 288
polytes, 282
sarpedon, 294
teredon, 224
zemippe, 218, 890
Papilionides, 210
Papilionine, 175, 240
Parantica aglea, 177
" ' . .erjlamica, 177
is :- . ceylomica, 177
Parapagurus pilosina*ue, 118
Parata alemis, 238
betleri, 89
thronous, 282
Parathranites, 7, 10, 16, 22
\% $:$ orimetalis, 16, 17
Parmara badk, 288
cingnia, 883
colaca, 25
conjuncta, 831
guttatus, 238
kumara, 281
narooa, 231
philippina, 281
Paromola, 124, 120, 156, 160
Paromolopsis, 124, 129, 180, 184, 160
" boasi, 160
Parthemopides 1
Parthenos cyanews, 188 virens, 183.
Parms cinereus, 29
Pathysa antiphathes, 228
nomile, 228
" " secinhoei, 284
Pavo nigripennis, 180
Pellornewn mandellii, 237
Feltarion, 86
Penems. 128
Ponthetrin, 254
Penthetriopsis, 20̃:
Pericrocotus brerirostric, 28
" frateroutios, 80
" molaris, 210 :
Petalomern, 123, 329.183, 183, 143, 144. 15k:
", granulata, 189, 167; 148

- Petalomera granmlata, var. indica, 140 prulchrie, 148.
Petrophila суамия, 841
Phylloccopus proregulus; 289

$$
\text { ".. superciliosus, } 8: 9
$$

Pica rustica, 109
Pierinar, 178, 210
Pieris copin, 219
Piluminine, 8, 4
Pirimela, 18, 94, 95
Pirimelinas, 5, 95
Pithecops dharma, 196
Platycoryetes, 86
Platyontchidse, 5
Platyonychus, 7 ?
Plesioneura alysos, 289
restricta, 829 n spilotherus, sts
Plioeoma, 96
Plocëela javanensis, 251
Ploceides, 250, 253
Ploceines, 254
Plocens, 251

$$
\text { atrigula, 250, 851, } 258
$$

baya, 250, 251, 858
bengulensis, 252
manyar, 258
megarhynchus, 250, 851, 258
rutledgıi, 250
Podacanthus, 96
Podicipes albipennis, 245
cristatus; 245
Podocatactes, 108
Podophthalmoida, 9, 92
Podophthalmws, 6, 9, 11, 92, 98
" neoreus, 88
" vigil, 95
Poephila mirabilis, 253
Polybius, 8
Polyommatus baticus, 208
" bosticus, 172, 248
" jesous, 199
Pomatocheles, 111
Ponatorhinus schisticeps, 887
Pongamia, 232
Pontus, 29
Porcellanopagurus, 111, 118
Portumandida 7
Portmon mis, 6, 7 :
Parvinas. 1, 2, 4, 6, 6, 18
Pomtuniens, 5
Portunines, 4, 6, 7, 10, 16
Pobtunimea, 5
Portunoida, 7, 8
Portinkes, 8, 9, 29
adiwete, 82
aivinulatems, 54
arcuation 88
cedomalli, 84.
Chaptalii, 80
icrfucijer, 81

Portunce gladiator, 85
" hastatoides, 88 !
ludgei, 54
merence, 18
miles, 62
pelagicus, 84
Poissonii, 81
sangmizolentue, 82; 61
serratus, 27
tranquebariows, 87
truncatus, 67
variegatus, 60
(Charybdis) miles, 68. trünidatuc, 87
(Thalamita) arcwatue, 80
․ " trweroatus, 68
Porsana parva, 109
Posidon, 29
Potamisa, 187, 188
Potamis camiba, 188
parysatis, 188
(Rohana) camiba, 188
Pratapa, 205
" deva, 206
Pratincola maura, 240
Precis iphita, 190
" laomedia, 190
Prioneris, 174 sita, 178, 210
Proteides lankre, 825
Pseudocarcinus, 94
Pseudocorystes, 108
Psoudodromia, 128, 129, 181, 186, 140
integrifions, 140,160
quadricormis, 149
Pteropodecyंs, 181
Pteruthius erythropterus, 888
Pterygoopidea everya, 88
Putorius Erminea, 107
Pyctorhis sincusis, 287
Pylocheles, 111
" Agassisii, 112
"Miersi, 111; 112
Pyuameis, 234
" cardui, 198
" indica, 188
" " nubicola, 188
Pyrrhocoram alpinue, 100
Pyrrhula exropea, 253
" murina, 258
Radema exprompta, 176
Rahinda sinuato, 190
Randia, 810
Raminids, 5
Rappala lankara, 208
" lasulina, 208
" melampus, 809
," orseis, 805

* schictacea, 208
". varuma, 209
Raphases, 177

Raphis, 177
Rathinda amor, 193, 207
Rhopalocampta bemjaminii, 288
Ihhyacornis fuliginosus, 241
Rohana carriba, 188
Rowrea, 288
Botacess, 821, 828
Ruticilla erythrogaster, 109
Sabia, 838
Salatura chrysippus, 177
gearetia, 177
plesippus, 177
Salvadora, 214
Bapindacere, 197
Sarangesa albiciliu, 825
8arcogmamanus atronuchalis, 245
Batybinas, 180
Scacorhynchus ruficops, 237
Schleichera, 102
Scylla, 9, 11, 87
" serrata, 26, 87
11 tranquebarica, 28
Sesbania, 208
Shorea robusta, 188, 204
Sida rhombifolia, 227
Giphia albicilla, 840
" strophiata, 240
Sitta frontalis, 239
" nagaensis, 289
Siva cyanuroptera, 287
Smilam, 208, 226
Spalgis epius, 196, 207
Spramestinse, 264
Sphserocarcinus, 5, 6, 8
Sphærodramia, 185, 129, 135, 186, 152
"
Kendalli, 158, 154
num, 164
Spindasis greeni, 806
Sporæginthus amandava, 254, 255
flavidiventris, 254
Strobilanthes, 198
Suastus gromius, 897
" minuta, 287
" minutus, 287
" subgrisea, 887
Surendra disealis, 804
quercetorum, 804
©urniculus lugubris, 243
Symphredra nais, 188
Tagiades atticus, 896
.. distane, 286
,, everym, 227
., minuta, 287
$"$ ". obscurus, 226
Tајиніа сіррня, 207
jehana, 207
\because longinus, 207
Talicada nyseus, 199
Tamarindus indica, 187
Tapena hampeoni, 826.
,, throartesi, 228.

Taractocera msevius, 898
Tasactrocera ", 288
Tarucus clathratus, 208
plinius, 208
telicanus, 208
theophrastus, 802
Telchinia violse, 195
Telicota bambusæ, 829
Tclmessus, 86
Telpausides, 8, 8, 4
Telpauaines, 2
Teracolus amata, 214
danaë, 215
etridn, 815
eucharis, 814, 216
fausta, 215
limbatus, 218
samguinalis, 215
taplini, 215
tripuncta, 815
Terias, 172, 174, 211, 212
betheseba, 211
cingala, 211, 212
citrina, 818
drona, 211
hainara, 811
hecabe, 218
hasabeoides, 218
lerna, 211
libythea, 811,812
nicobariensis, 218
nikohariensis, 818
pallitana, 211
phanospila, 212
rama, 211
rotundularis, 218
rubella, 211
santana, 211
sari, 818
sonna, 211
silhetana, 218
simulata, 212
suava, 218
templetonii, 818
uniformis, 813
vemata, 811,218
Terminalia, 208, 288
Tetranthera, 223
Thalamita, 8, 11, 48, 64, 71, 78, 78, 80, 86=
" admeta, 74, 88, 84, 86, 86, 88, 90, 91, 92
admets, 76, 82, 89
annulata, 54
arcunta, 74, 82
arcwutus, 88
callinnasse, 60
Chaptalii, 74, 80, 81, 82, 88
crassimura, 78
cremata, 78, 76, 77, 78, 83
crucifera, 61
Dаме, 78, 76, 77, 78, 79, 88, 9:

Index.

Thalamites quadrilatdres, 72
Thalamitoides, 9
Thalamonym, 8, 9, 11, 19, 48, 71
dañ, 71, 72
" var. gracilipes, 71
gracilipes, 71, 76
Thereicerym lineatus, 248
Thestias pyrene, 218
Thia, 98
Thinde, 95
Thines, 5, 95, 06, 97
Thranites, 7
Tichodroma muraria, 109
Tiga shorei, 248
Tinnunculus alaudarius, 108, 244
Tirumala limniacs, 178
" limniace, 176
(1) melisea dravidarum, 177
") septentrionif, 177
Trachycarcinus, $96,100,103$
" corallinus, 102
") glaucus, 101
Tragia, 194, 195
" involucrata, 194
Tragopan Blythi, 244
Trichia, 96
Trichines, 5, 96
Trichocarcinus, 95
Trichocera, 95
Trichopeltariwm, 96, 99, 103
" ovale, 99

Trochaloptorum lineatum, 109
Troglopagurus, 111
Troides darsius, 220
Tronga biseriata, 178
Turdus visci-orus, 109
Turnix pugnax, 244
Tylaspis, 111, 112
Tylophora, 177
Udaspes folus, 229
Unona, 283
Uria ringvia, 120
Urobrachya, 254
Vallaris, 177
Vanessa, 284
" antiopa, 234
", canace, 193
," haronica, 193
", limenitoides, 234
Vateria, 200
Vidua, 254
Viola, 194
Virachola isocrates, 210
i. perse, 210

Waltheria indica, 227
Xaira, 7
Xanthide, 2, 3, 4, 7, 12, 117
Xanthine, 3, 4
Xıктнini, 1, 2, 95
Xantho integer, 97
Xiphonectes, 9, 29
" loptocheles, 41
" longiapinosus, 40
Xylia, 197, 201, 207
If dolabriformis, 225
Xylopagurws, 111
rectus, 112
Ypthima coylonica, 185
singala, 184
" thora, 184
Zea mythocoides, 283
Zesus chrysomallus, 205
Zetides agamemnon, 224
doson, 224
, telephus, 224
Zinzibirackes, 229
Zisera, 199
gaika, 198
indica, 199
karsandra, 198
lysimon, 198
otis, 199
pygmeea, 198
Ziayphwe, 208, 208, 209, 216
Zoantilde, 118
Zoanthus, 115
Zosterops simplen, 287

[^0]: 10. Scylla serrata (Forsk.) De Haan.

 Cancer serratus, Forskal, Descr. Anim. p. 90.
 Cancer olivaceus, Herbst, Krabben, II. V. 157, pl. xxxviii. fig. 8.
 Portunus tranquebaricus, Fabricias, Ent. Syst. Sappl. p. 366; Bosc, Hist. Nat. Crust. I. p. 219 ; Latreille, Hist. Nat. Crust. VI. p. 16 and Encycl. Meth. X. p. 191.

 Portunus serratus, Rüppell, 24 Krabben roth. Meer. p. 10, pl. ii.
 Iupea tranquebarica, Milne Edwards, Hist. Nat. Crust. I. 448.
 Iupea lobifrons, Milne Edwards, Hist. Nat. Crust. I. 458 (fide A. M. Edw.).
 Scylla serrata De Haan, Faun. Japon. Crust. p. 44 : Krauss, Sudafr. Orust. p. 25 :
 A. Milne Edwards, Ann. Soi. Nat. Zool. (4) XIV. 1860, p. 252, and Archiv. du Mus.
 X. 1861, p. 349, and Nouv. Archiv. du Mas. IX. 1873, p. 162, and in Maillard's

[^1]: [" Amphitrite argentata, White List. Crust. Brit. Mus. p. 126 ".]
 Neptunus argentatus, A. Milne Edwards, Archiv. du Mus. X. 1861, pp. 832, 839, pl. xxxi. fig. 4 : J. B. Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 868.

 Neptunus gladiator, var. argentatus, Miers, Challenger Brachyura, p. 177 : Cano, Boll. Soc. Nat. Napoli. III. 1889, p. 214 : Ortmann, Zool. Jahrb. Byst, VII, 1893. 94, p. 73.

[^2]: 26. Neptunus (Achelous) granulatus (Edw.) A. M. Edw.

 Lupea gramulata, Milne Fdwards, Hist. Nat. Orast. I. 454.
 Amphitrite gladiator, De Haan, Faun. Jap. Crust. p. 65, pl. xviii. Ag. 1.
 Amphitrite eppeciosa, Dana, Proc. Ac. Nat. Soi. Philad. 1852, p. 84, and U. 8. Expl. Exp., Crust. pt. I. p. 276, pl. xvii. fig. 1.

 Achelous granulatus, A. Milne Edwards, Arohiv. du Mus. X. 1861, pp. 344, 847, and in Maillard's l'ile Réanion, Anneze F. p. 2, and Nouv. Archiv. du Mus, IV.

[^3]: 39. Charybdis (Goniosoma) orientalis (Dana).
 ? Charybdis orientalis, Dana, Proc. Ac. Nat. Sci. Philad. 1852, p. 85, and U. S. Expl. Exp. Crust. pt. I. p. 285, pl. xvii. Ag. 10.

 Goniosoma orientale, A. Milne Edwards, Arohiv. du Mus. X. 1861, pp. 383, 385 :

[^4]: Family CANCRID压.
 Canceriens arqués (Pseudocarcinus and Pirimela only) Milne Edwards Hist. Nat. Crust. I. 371 : and Corystiens(part) Milne Edwards, op, cit. II. 139.

[^5]: * The linea anomurica is a curious suture-line running fore and aft on either aide from the posterior border of the carapace to the inner side of the antennal spine. For its homologne among the nearer relatives of the Homolidea we hare to go to certain species of Peneus.

[^6]: * The branchial groove of Boavier, which by most anthors is called the "cervical " groove.

[^7]: - A. Milne Edwards, Ball. Mus. Comp. Zool. Vol. VIII. 1880, p. 32, and Recueil de figares de Crustaces Nouveaux eto. pl. 39, fig. 2. Not the Homalodremia of Miers, which ought to be placed with Pseudodromia.
 \dagger E. L. Bouvier, Bull. Soc. Philom. Paris (8) VIII. 1895-96, p. 37, et seq.
 J. II. 17

[^8]: * The material at my disposal, at present, does not permit me to indulge in direection ; but I have been able to make out that the branchial plumes and epipodites are more numerous than they are in Dromia, Cryptodromia, \&o.

[^9]: *The subfamily name should be more correctly Danaididx, as it ought to be based on the genus Danaida, Latreille first using that name in 1805, Danaus in 1809, and Danais in 1810 (Anrivillius, Kongl. St. Fet. Akad. Hande, vol. xxxi, p. 80 (1898).

[^10]: - I am reeponsible for the identification of the speoies herein recorded, and for the notes in brackets. Lieutenant Turner has with great generosity, presented several specimens (belonging to the species marked with asterisks) to the Indian Musenm, including the piok of the colleotion such rarities as Certhia manipurensis, Dendrocopus pyrrhothoras, and Microperdiv manipurensis. Nat. Hist. Seo., A.8.B. J. 11. 30

[^11]: - Not entered in Blyth's catalogue, though the atands bear labels in his handwriting.

[^12]: * Through Penthetria, Penthetriopsis, and Urobrachya on the one hand, Fidua and Hypochera on the other.

